Supramolecular structure in full-length Alzheimer's β-amyloid fibrils:: Evidence for a parallel β-sheet organization from solid-state nuclear magnetic resonance

被引:277
作者
Balbach, JJ
Petkova, AT
Oyler, NA
Antzutkin, ON
Gordon, DJ
Meredith, SC
Tycko, R
机构
[1] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
[2] Lulea Univ Technol, Div Inorgan Chem, S-95187 Lulea, Sweden
[3] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
关键词
D O I
10.1016/S0006-3495(02)75244-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We report constraints on the supramolecular structure of amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)) obtained from solid-state nuclear magnetic resonance (NMR) measurements of intermolecular dipole-dipole couplings between C-13 labels at 11 carbon sites in residues 2 through 39. The measurements are carried out under magic-angle spinning conditions, using the constant-time finite-pulse radiofrequency-driven recoupling (fpRFDR-CT) technique. We also present one-dimensional C-13 magic-angle spinning NMR spectra of the labeled Abeta(1-40). samples. The fpRFDR-CT data reveal nearest-neighbor intermolecular distances of 4.8 +/- 0.5 Angstrom for carbon sites from residues 12 through 39, indicating a parallel alignment of neighboring peptide chains in the predominantly beta-sheet structure of the amyloid fibrils. The one-dimensional NMR spectra indicate structural order at these sites. The fpRFDR-CT data and NMR spectra also indicate structural disorder in the N-terminal segment of Abeta(1-40), including the first nine residues. These results place strong constraints on any molecular-level structural model for full-length beta-amyloid fibrils.
引用
收藏
页码:1205 / 1216
页数:12
相关论文
共 59 条
  • [11] Molecular modeling of the Aβ1-42 peptide from Alzheimer's disease
    Chaney, MO
    Webster, SD
    Kuo, YM
    Roher, AE
    [J]. PROTEIN ENGINEERING, 1998, 11 (09): : 761 - 767
  • [12] Designing conditions for in vitro formation of amyloid protofilaments and fibrils
    Chiti, F
    Webster, P
    Taddei, N
    Clark, A
    Stefani, M
    Ramponi, G
    Dobson, CM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) : 3590 - 3594
  • [13] Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid
    Conway, KA
    Harper, JD
    Lansbury, PT
    [J]. BIOCHEMISTRY, 2000, 39 (10) : 2552 - 2563
  • [14] Determination of peptide amide configuration in a model amyloid fibril by solid-state NMR
    Costa, PR
    Kocisko, DA
    Sun, BQ
    Lansbury, PT
    Griffin, RG
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (43) : 10487 - 10493
  • [15] Structure of Bordetella pertussis virulence factor P.69 pertactin
    Emsley, P
    Charles, IG
    Fairweather, NF
    Isaacs, NW
    [J]. NATURE, 1996, 381 (6577) : 90 - 92
  • [16] FIBRIL FORMATION BY PRIMATE, RODENT, AND DUTCH-HEMORRHAGIC ANALOGS OF ALZHEIMER AMYLOID BETA-PROTEIN
    FRASER, PE
    NGUYEN, JT
    INOUYE, H
    SUREWICZ, WK
    SELKOE, DJ
    PODLISNY, MB
    KIRSCHNER, DA
    [J]. BIOCHEMISTRY, 1992, 31 (44) : 10716 - 10723
  • [17] PH-DEPENDENT STRUCTURAL TRANSITIONS OF ALZHEIMER AMYLOID PEPTIDES
    FRASER, PE
    NGUYEN, JT
    SUREWICZ, WK
    KIRSCHNER, DA
    [J]. BIOPHYSICAL JOURNAL, 1991, 60 (05) : 1190 - 1201
  • [18] George AR, 1999, BIOPOLYMERS, V50, P733, DOI 10.1002/(SICI)1097-0282(199912)50:7<733::AID-BIP6>3.0.CO
  • [19] 2-7
  • [20] Watching amyloid fibrils grow by time-lapse atomic force microscopy
    Goldsbury, C
    Kistler, J
    Aebi, U
    Arvinte, T
    Cooper, GJS
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (01) : 33 - 39