Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction

被引:142
作者
Jin, YD [1 ]
Shen, Y [1 ]
Dong, SJ [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
关键词
D O I
10.1021/jp0375517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The deliberate tailoring of nanostructured metallic catalysts at the monolayer-level is an ongoing challenge and could lead to new electronic and catalytic properties, since surface-catalyzed reactions are extremely sensitive to the atomic-level details of the catalytic surface. In this article, we present a novel electrochemical strategy to nanoparticle-based catalyst design using the recently developed underpotential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt2+ yielded a uniform Pt layer on colloid gold surfaces. The ultrathin (nominally monolayer-level) Pt coating of the novel nanostructured particles was confirmed by cyclic voltammetry and X-ray photoelectron spectra (XPS). The present results demonstrate that ultrathin Pt coating effects efficiently and behaves as the nanostructured monometallic Pt for electrocatalytic oxygen reduction, and also shows size-dependent, tunable electrocatalytic ability. The as-prepared ultrathin Pt-coated Au nanoparticle monolayer electrodes reduce O-2 predominantly by four electrons to H2O, as confirmed by the rotating ring-disk electrode (RRDE) technique.
引用
收藏
页码:8142 / 8147
页数:6
相关论文
共 40 条
[1]   A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis [J].
Aiken, JD ;
Finke, RG .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1999, 145 (1-2) :1-44
[2]  
AOMORJAI AG, 1994, INTRO SURFACE CHEM C
[3]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915
[4]   ELECTROOXIDATION OF CO AND METHANOL ON GRAPHITE-BASED PLATINUM-ELECTRODES COMBINED WITH OXIDE-SUPPORTED ULTRAFINE GOLD PARTICLES [J].
BISWAS, PC ;
NODASAKA, Y ;
ENYO, M ;
HARUTA, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 381 (1-2) :167-177
[5]   Catalysis by gold [J].
Bond, GC ;
Thompson, DT .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (3-4) :319-388
[6]   Pt submonolayers on Ru nanoparticles - A novel low Pt loading, high CO tolerance fuel cell electrocatalyst [J].
Brankovic, SR ;
Wang, JX ;
Adzic, RR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (12) :A217-A220
[7]   Metal monolayer deposition by replacement of metal adlayers on electrode surfaces [J].
Brankovic, SR ;
Wang, JX ;
Adzic, RR .
SURFACE SCIENCE, 2001, 474 (1-3) :L173-L179
[8]   Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis [J].
Crooks, RM ;
Zhao, MQ ;
Sun, L ;
Chechik, V ;
Yeung, LK .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (03) :181-190
[9]  
Dai JH, 2002, NANO LETT, V2, P497, DOI [10.1021/nl025547l, 10.1021/nl0255471]
[10]  
DEL PM, 2002, APPL PHYS LETT, V81, P2635