On the moduli spaces of M(atrix)-theory compactifications

被引:10
作者
Berenstein, D
Corrado, R
Distler, J
机构
[1] Theory Group, Department of Physics, University of Texas at Austin, Austin
基金
美国国家科学基金会;
关键词
M-theory; matrix models; moduli; U-duality;
D O I
10.1016/S0550-3213(97)00427-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
By identifying the moduli space of coupling constants in the SYM description of toroidal compactifications of M(atrix)-theory, we construct the M(atrix) description of the moduli spaces of type IIA string theory compactified on T-n. Addition of theta terms to the M(atrix) SYM produces the shift symmetries necessary to recover the correct global structure of the moduli spaces. Up to n = 3, the corresponding BPS charges transform under the proper representations of the U-duality groups, For n = 4,5, if we make the ansatz of including the BPS charges corresponding to the wrapped M-theory 5-brane, the correspondence with type IIA continues to hold. However, for n = 6, we find additional charges for which there are no obvious candidates in M(atrix)-theory, (C) 1997 Elsevier Science B.V. PACS: 11.10.Kk; 11.25.-w; 11.25.Mj; 12.90.+b.
引用
收藏
页码:239 / 255
页数:17
相关论文
共 39 条
[21]   NEW HETEROTIC STRING THEORIES IN UNCOMPACTIFIED DIMENSIONS LESS-THAN 10 [J].
NARAIN, KS .
PHYSICS LETTERS B, 1986, 169 (01) :41-46
[22]   Dirichlet branes and Ramond-Ramond charges [J].
Polchinski, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (26) :4724-4727
[23]  
Polchinski J., Notes on D-branes
[24]  
Polchinski J., TASI LECT D BRANES
[25]   Matrix theory and U-duality in seven dimensions [J].
Rozali, M .
PHYSICS LETTERS B, 1997, 400 (3-4) :260-264
[26]   Non-trivial fixed points of the renormalization group in six dimensions [J].
Seiberg, N .
PHYSICS LETTERS B, 1997, 390 (1-4) :169-171
[27]  
SEIBERG N, NEW THEORIES 6 DIMEN
[28]   Rotational invariance in the M(atrix) formulation of type IIB theory [J].
Sethi, S ;
Susskind, L .
PHYSICS LETTERS B, 1997, 400 (3-4) :265-268
[29]   KALUZA-KLEIN MONOPOLE [J].
SORKIN, RD .
PHYSICAL REVIEW LETTERS, 1983, 51 (02) :87-90
[30]  
SUSSKIND L, T DUALITY MATRIX THE