A simple mechano-thermal coating process for improved lithium battery cathode materials

被引:46
作者
Fey, GTK [1 ]
Yang, HZ
Kumar, TP
Naik, SP
Chiang, AST
Lee, DC
Lin, JR
机构
[1] Natl Cent Univ, Dept Chem & Mat Engn, Chungli 32054, Taiwan
[2] Ind Technol Res Inst, Hsinchu 310, Taiwan
关键词
coated cathodes; mechano-thermal coating; coated LiCoO2; fumed silica; lithium-ion battery;
D O I
10.1016/j.jpowsour.2004.01.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple, economical and convenient mechano-thermal coating procedure for the production of LiCoO2 with improved cycling performance is described. The coating material was pre-formed nanoparticulate fumed silica. TEM studies with a 1.0wt.% silica-coated cathode suggested that the silica species partially diffused into the bulk of the cathode material. XRD studies showed a diminished lattice parameter c upon coating, indicating that a substitutional compound of the LiSiyCo1-yO2+0.5y type might have formed upon calcination. SEM images, R-factor values from XRD studies and electrochemical studies showed that a coating level of 1.0wt.% gave an optimal performance in capacity and cyclability. SEM images showed that above this level, the excess silica formed spherules, which got glued to the coated cathode particles. Galvanostatic cycling studies showed that at a coating level of 1.0wt.%, cyclability improved three and nine times for two commercial LiCoO2 samples. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 180
页数:9
相关论文
共 29 条
[1]   Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
SOLID STATE IONICS, 1996, 83 (1-2) :167-173
[2]   Identification of cathode materials for lithium batteries guided by first-principles calculations [J].
Ceder, G ;
Chiang, YM ;
Sadoway, DR ;
Aydinol, MK ;
Jang, YI ;
Huang, B .
NATURE, 1998, 392 (6677) :694-696
[3]   Improvement of structural stability of LiMn2O4 cathode material on 55°C cycling by sol-gel coating of LiCoO2 [J].
Cho, J ;
Kim, GB ;
Lim, HS ;
Kim, CS ;
Yoo, SI .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (12) :607-609
[4]  
Cho J, 2000, ELECTROCHEM SOLID ST, V3, P362
[5]   LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J].
Cho, J ;
Kim, YJ ;
Park, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1110-A1115
[6]  
Cho J, 2001, ANGEW CHEM INT EDIT, V40, P3367, DOI 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO
[7]  
2-A
[8]   Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J].
Cho, J ;
Kim, YJ ;
Park, B .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3788-3791
[9]   A REVIEW OF FUNDAMENTAL COATING ISSUES FOR HIGH-TEMPERATURE COMPOSITES [J].
COURTRIGHT, EL .
SURFACE & COATINGS TECHNOLOGY, 1994, 68 :116-125
[10]   STRUCTURE AND ELECTROCHEMISTRY OF LI1+/-YNIO2 AND A NEW LI2NIO2 PHASE WITH THE NI(OH)2 STRUCTURE [J].
DAHN, JR ;
VONSACKEN, U ;
MICHAL, CA .
SOLID STATE IONICS, 1990, 44 (1-2) :87-97