Quantile regression via an MM algorithm

被引:12
作者
Hunter, DR [1 ]
Lange, K
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
关键词
EM algorithm; Gauss-Newton method; L-1; regression; majorization;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is an increasingly popular method for estimating the quantiles of a distribution conditional on the values of covariates. Regression quantiles are robust against the influence of outliers and, taken several at a time, they give a more complete picture of the conditional distribution than a single estimate of the center. This article first presents an iterative algorithm for finding sample quantiles without sorting and then explores a generalization of the algorithm to nonlinear quantile regression. Our quantile regression algorithm is termed an MM, or majorize-minimize, algorithm because it entails majorizing the objective function by a quadratic function followed by minimizing that quadratic. The algorithm is conceptually simple and easy to code, and our numerical tests suggest that it is computationally competitive with a recent interior point algorithm for most problems.
引用
收藏
页码:60 / 77
页数:18
相关论文
共 34 条
[21]   REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1978, 46 (01) :33-50
[22]  
Lange K, 2000, J COMPUT GRAPH STAT, V9, P1, DOI 10.2307/1390605
[23]  
LANGE K, 1995, J ROY STAT SOC B MET, V57, P425
[24]   FINITE ALGORITHMS FOR ROBUST LINEAR-REGRESSION [J].
MADSEN, K ;
NIELSEN, HB .
BIT, 1990, 30 (04) :682-699
[25]   COMPUTATIONAL EXPERIENCES WITH DISCRETE LP-APPROXIMATION [J].
MERLE, G ;
SPATH, H .
COMPUTING, 1974, 12 (04) :315-321
[26]  
ORTEGA J., 1970, ITERATIVE SOLUTION N
[27]  
Portnoy S, 1997, STAT SCI, V12, P279
[28]   CENSORED REGRESSION QUANTILES [J].
POWELL, JL .
JOURNAL OF ECONOMETRICS, 1986, 32 (01) :143-155
[29]  
Press W. H., 1986, NUMERICAL RECIPES
[30]  
Rousseeuw P. J., 2003, ROBUST REGRESSION OU