Patch-Collaborative Spectral Point-Cloud Denoising

被引:70
作者
Rosman, G. [1 ]
Dubrovina, A. [1 ]
Kimmel, R. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
基金
欧洲研究理事会;
关键词
Laplace-Beltrami; point cloud; denoising; G; 1; 2 [Mathematics of Computing]: ApproximationApproximation of surfaces and contours; I; 3; 5 [Computer Graphics]: Computational Geometry and Object ModellingGeometric algorithms languages and systems; 4; 8 [Image Processing and Computer Vision]: Scene AnalysisSurface fitting; SURFACE RECONSTRUCTION;
D O I
10.1111/cgf.12139
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new framework for point cloud denoising by patch-collaborative spectral analysis. A collaborative generalization of each surface patch is defined, combining similar patches from the denoised surface. The Laplace-Beltrami operator of the collaborative patch is then used to selectively smooth the surface in a robust manner that can gracefully handle high levels of noise, yet preserves sharp surface features. The resulting denoising algorithm competes favourably with state-of-the-art approaches, and extends patch-based algorithms from the image processing domain to point clouds of arbitrary sampling. We demonstrate the accuracy and noise-robustness of the proposed algorithm on standard benchmark models as well as range scans, and compare it to existing methods for point cloud denoising.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 68 条
[31]   From Local Kernel to Nonlocal Multiple-Model Image Denoising [J].
Katkovnik, Vladimir ;
Foi, Alessandro ;
Egiazarian, Karen ;
Astola, Jaakko .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 86 (01) :1-32
[32]   Acquiring 3D Indoor Environments with Variability and Repetition [J].
Kim, Young Min ;
Mitra, Niloy J. ;
Yan, Dong-Ming ;
Guibas, Leonidas .
ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (06)
[33]   Anisotropic smoothing of point sets [J].
Lange, C ;
Polthier, K .
COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (07) :680-692
[34]  
Lebrun M., 2012, PREPRINT
[35]   The approximation power of moving least-squares [J].
Levin, D .
MATHEMATICS OF COMPUTATION, 1998, 67 (224) :1517-1531
[36]  
Lipman Y., 2007, P TOG, V26
[37]  
Lipman Yaron., 2007, Symp. on Geometry Processing, P59, DOI DOI 10.1145/1281991.1281999.
[38]  
Lou YF, 2009, LECT NOTES COMPUT SC, V5716, P62
[39]  
Mahmoudi M., 2009, 2280 IMA U MINN
[40]  
Mairal Julien, 2009, ICCV