Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes

被引:61
作者
Jeon, Jae-Deok
Kim, Myung-Jin
Kwak, Seung-Yeop
机构
[1] Seoul Natl Univ, HOMRC, Seoul 151744, South Korea
[2] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea
关键词
pore-filling polymer electrolyte; porous membrane; TiO2; nanoparticles; ionic conductivity; rechargeable lithium batteries; conductivity;
D O I
10.1016/j.jpowsour.2006.08.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To enhance the performance (i.e., mechanical properties and ionic conductivity) of pore-filling polymer electrolytes, titanium dioxide (TiO2) nanoparticles are added to both a porous membrane and its included viscous electrolyte, poly(ethylene oxide-co-ethylene carbonate) copolymer (P(EO-EC)). A porous membrane with 10 wt.% TiO2 shows better performance (e.g., homogeneous distribution, high uptake, and good mechanical properties) than the others studied and is therefore chosen as the matrix to prepare polymer electrolytes. A maximum conductivity of 5.1 x 10(-5) S cm(-1) at 25 degrees C is obtained for a polymer electrolyte containing 1.5 wt.% TiO2 in a viscous electrolyte, compared with 3.2 x 10(-5) S cm(-1) for a polymer electrolyte without TiO2. The glass transition temperature, T-g is lowered by the addition of TiO2 (up to 1.5 wt.% in a viscous electrolyte) due to interaction between P(EO-EC) and TiO2, which weakens the interaction between oxide groups of the P(EO-EC) and lithium cations. The overall results indicate that the sample prepared with 10 wt.% TiO2 for a porous membrane and 1.5 wt.% TiO2 for a viscous electrolyte is a promising polymer electrolyte for rechargeable lithium batteries. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1304 / 1311
页数:8
相关论文
共 20 条
[1]   Nanoparticle-dispersed PEO polymer electrolytes for Li batteries [J].
Ahn, JH ;
Wang, GX ;
Liu, HK ;
Dou, SX .
JOURNAL OF POWER SOURCES, 2003, 119 :422-426
[2]   Investigation on the stability of the lithium-polymer electrolyte interface [J].
Appetecchi, GB ;
Scaccia, S ;
Passerini, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (12) :4448-4452
[3]   ELECTROCHEMICAL PROPERTIES OF POLYETHYLENE OXIDE-LI[(CF3SO2)(2)N]-GAMMA-LIALO2 COMPOSITE POLYMER ELECTROLYTES [J].
BORGHINI, MC ;
MASTRAGOSTINO, M ;
PASSERINI, S ;
SCROSATI, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (07) :2118-2121
[4]   Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides [J].
Chung, SH ;
Wang, Y ;
Persi, L ;
Croce, F ;
Greenbaum, SG ;
Scrosati, B ;
Plichta, E .
JOURNAL OF POWER SOURCES, 2001, 97-8 :644-648
[5]   Solvent-free polymer electrolytes based on thermally annealed porous P(VdF-HFP)/P(EO-EQ membranes [J].
Jeon, JD ;
Cho, BW ;
Kwak, SY .
JOURNAL OF POWER SOURCES, 2005, 143 (1-2) :219-226
[6]   Solvent-free polymer electrolytes -: I.: Preparation and characterization of polymer electrolytes having pores filled with viscous P(EO-EC)/LiCF3SO3 [J].
Jeon, JD ;
Kwak, SY ;
Cho, BW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (08) :A1583-A1589
[7]   Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes [J].
Ji, KS ;
Moon, HS ;
Kim, JW ;
Park, JW .
JOURNAL OF POWER SOURCES, 2003, 117 (1-2) :124-130
[8]   Ceramic-polymer electrolytes for all-solid-state lithium rechargeable batteries [J].
Jiang, G ;
Maeda, S ;
Saito, Y ;
Tanase, S ;
Sakai, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A767-A773
[9]   Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles [J].
Kim, KM ;
Park, NG ;
Ryu, KS ;
Chang, SH .
POLYMER, 2002, 43 (14) :3951-3957
[10]   MOLECULAR VIBRATIONS OF 3 CRYSTAL FORMS OF POLY(VINYLIDENE FLUORIDE) [J].
KOBAYASHI, M ;
TASHIRO, K ;
TADOKORO, H .
MACROMOLECULES, 1975, 8 (02) :158-171