Asymptotic normality of a combined regression estimator

被引:26
作者
Fan, YQ [1 ]
Ullah, A
机构
[1] Univ Windsor, Windsor, ON N9B 3P4, Canada
[2] Univ Calif Riverside, Riverside, CA 92521 USA
基金
加拿大自然科学与工程研究理事会;
关键词
asymptotic distribution; convex combination; kernel estimation; model specification testing; parametric estimation; semiparametric estimation;
D O I
10.1006/jmva.1999.1838
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a combined regression estimator by using a parametric estimator and a nonparametric estimator of the regression function. The asymptotic distribution of this estimator is obtained for cases where the parametric regression model is correct, incorrect, and approximately correct. These distributional results imply that the combined estimator is superior to the kernel estimator in the sense that it can never do worse than the kernel estimator in terms of convergence rate and it has the same convergence rate as the parametric estimator in the case where the parametric model is correct. Unlike the parametric estimator, the combined estimator is robust to model misspecification. In addition, we also establish the asymptotic distribution of the estimator of the weight given to the parametric estimator in constructing the combined estimator. This can be used to construct consistent tests for the parametric regression model used to form the combined estimator. (C) 1999 Academic Press AMS 1991 subject classifications: 62G07, 62G10, 62J12.
引用
收藏
页码:191 / 240
页数:50
相关论文
共 24 条
[11]  
GOZALO P, 1995, UNPUB USING PARAMETR
[13]   BANDWIDTH CHOICE FOR AVERAGE DERIVATIVE ESTIMATION [J].
HARDLE, W ;
HART, J ;
MARRON, JS ;
TSYBAKOV, AB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) :218-226
[14]  
Hardle W., 1990, APPL NONPARAMETRIC R, DOI DOI 10.1017/CCOL0521382483
[15]   NONPARAMETRIC DENSITY-ESTIMATION WITH A PARAMETRIC START [J].
HJORT, NL ;
GLAD, IK .
ANNALS OF STATISTICS, 1995, 23 (03) :882-904
[16]  
Hjort NL, 1996, ANN STAT, V24, P1619
[17]  
HJORT NL, IN PRESS BIOMETRIKA
[18]   ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS [J].
JENNRICH, RI .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02) :633-&
[19]   Nonparametric selection of regressors: The nonnested case [J].
Lavergne, P ;
Vuong, QH .
ECONOMETRICA, 1996, 64 (01) :207-219
[20]   2ND-ORDER APPROXIMATION IN THE PARTIALLY LINEAR-REGRESSION MODEL [J].
LINTON, O .
ECONOMETRICA, 1995, 63 (05) :1079-1112