The AMP-activated protein kinase - Fuel gauge of the mammalian cell?

被引:1113
作者
Hardie, DG [1 ]
Carling, D [1 ]
机构
[1] HAMMERSMITH HOSP,ROYAL POSTGRAD MED SCH,MRC,MOL MED GRP,LONDON W12 0HS,ENGLAND
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1997年 / 246卷 / 02期
基金
英国惠康基金;
关键词
AMP-activated protein kinase; SNF1; fuel gauge; environmental stress; hydroxymethylglutaryl-CoA reductase; acetyl-CoA carboxylase; phosphorylation; ATP levels; kinase cascade;
D O I
10.1111/j.1432-1033.1997.00259.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A single entity, the AMP-activated protein kinase (AMPK), phosphorylates and regulates in vivo hydroxymethylglutraryl-CoA reductase and acetyl-CoA carboxylase (key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively), and probably many additional targets. The kinase is activated by high AMP and low ATP via a complex mechanism, which involves allosteric regulation, promotion of phosphorylation by an upstream protein kinase (AMPK kinase), and inhibition of dephosphorylation. This protein-kinase cascade represents a sensitive system, which is activated by cellular stresses that deplete ATP, and thus acts like a cellular fuel gauge. Our central hypothesis is that, when it detects a 'low-fuel' situation, it protects the cell by switching off ATP-consuming pathways (e.g. fatty acid synthesis and sterol synthesis) and switching on alternative pathways for ATP generation (e.g. fatty acid oxidation). Native AMP-activated protein kinase is a heterotrimer consisting of a catalytic alpha subunit, and beta and gamma subunits, which are also essential for activity. All three subunits have homologues in budding yeast, which are components of the SNF1 protein-kinase complex. SNF1 is activated by glucose starvation (which in yeast leads to ATP depletion) and genetic studies have shown that it is involved in derepression of glucose-repressed genes. This raises the intriguing possibility that AMPK may regulate gene expression in mammals. AMPK/SNF1 homologues are found in higher plants, and this protein-kinase cascade appears to be an ancient system which evolved to protect cells against the effects of nutritional or environmental stress.
引用
收藏
页码:259 / 273
页数:15
相关论文
共 138 条
[21]  
CARLSON CA, 1973, J BIOL CHEM, V248, P378
[22]   MOLECULAR ANALYSIS OF THE SNF4 GENE OF SACCHAROMYCES-CEREVISIAE - EVIDENCE FOR PHYSICAL ASSOCIATION OF THE SNF4 PROTEIN WITH THE SNF1 PROTEIN-KINASE [J].
CELENZA, JL ;
ENG, FJ ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5045-5054
[23]   MUTATIONAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE SNF1 PROTEIN-KINASE AND EVIDENCE FOR FUNCTIONAL INTERACTION WITH THE SNF4 PROTEIN [J].
CELENZA, JL ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5034-5044
[24]   A YEAST GENE THAT IS ESSENTIAL FOR RELEASE FROM GLUCOSE REPRESSION ENCODES A PROTEIN-KINASE [J].
CELENZA, JL ;
CARLSON, M .
SCIENCE, 1986, 233 (4769) :1175-1180
[25]  
CHEN B, 1986, BIOCHEM BIOPH RES CO, V139, P228
[26]   Analysis of the specificity of the AMP-activated protein kinase by site-directed mutagenesis of bacterially expressed 3-hydroxy 3-methylglutaryl-CoA reductase, using a single primer variant of the unique-site-elimination method [J].
Ching, YP ;
Davies, SP ;
Hardie, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 237 (03) :800-808
[27]   REGULATION OF HMG-COA REDUCTASE - IDENTIFICATION OF THE SITE PHOSPHORYLATED BY THE AMP-ACTIVATED PROTEIN-KINASE INVITRO AND IN INTACT RAT-LIVER [J].
CLARKE, PR ;
HARDIE, DG .
EMBO JOURNAL, 1990, 9 (08) :2439-2446
[28]  
CLARKE PR, 1991, ADV PROT PHOSPHATASE, V6, P187
[29]  
CORTON JM, 1995, EUR J BIOCHEM, V229, P558, DOI 10.1111/j.1432-1033.1995.tb20498.x
[30]   ROLE OF THE AMP-ACTIVATED PROTEIN-KINASE IN THE CELLULAR STRESS-RESPONSE [J].
CORTON, JM ;
GILLESPIE, JG ;
HARDIE, DG .
CURRENT BIOLOGY, 1994, 4 (04) :315-324