Generalized linear mixed models: a practical guide for ecology and evolution

被引:6760
作者
Bolker, Benjamin M. [1 ]
Brooks, Mollie E. [1 ]
Clark, Connie J. [1 ]
Geange, Shane W. [2 ]
Poulsen, John R. [1 ]
Stevens, M. Henry H. [3 ]
White, Jada-Simone S. [1 ]
机构
[1] Univ Florida, Dept Bot & Zool, Gainesville, FL 32611 USA
[2] Victoria Univ Wellington, Sch Biol Sci, Wellington 6140, New Zealand
[3] Miami Univ, Dept Bot, Oxford, OH 45056 USA
关键词
LIKELIHOOD RATIO TESTS; MAXIMUM-LIKELIHOOD; MULTILEVEL MODELS; VARIANCE; INFERENCE; SELECTION; SIZE; APPROXIMATIONS; STOCHASTICITY; HERITABILITY;
D O I
10.1016/j.tree.2008.10.008
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
How should ecologists and evolutionary biologists analyze nonnormal data that involve random effects? Nonnormal data such as counts or proportions often defy classical statistical procedures. Generalized linear mixed models (GLMMs) provide a more flexible approach for analyzing nonnormal data when random effects are present. The explosion of research on GLMMs in the last decade has generated considerable uncertainty for practitioners in ecology and evolution. Despite the availability of accurate techniques for estimating GLMM parameters in simple cases, complex GLMMs are challenging to fit and statistical inference such as hypothesis testing remains difficult. We review the use (and misuse) of GLMMs in ecology and evolution, discuss estimation and inference and summarize 'best-practice' data analysis procedures for scientists facing this challenge.
引用
收藏
页码:127 / 135
页数:9
相关论文
共 69 条
[41]  
McCarthy MA, 2007, BAYESIAN METHODS FOR ECOLOGY, P1, DOI 10.1017/CBO9780511802454
[42]   Extinction risk depends strongly on factors contributing to stochasticity [J].
Melbourne, Brett A. ;
Hastings, Alan .
NATURE, 2008, 454 (7200) :100-103
[43]   Habitat models of bird species' distribution: an aid to the management of coastal grazing marshes [J].
Milsom, TP ;
Langton, SD ;
Parkin, WK ;
Peel, S ;
Bishop, JD ;
Hart, JD ;
Moore, NP .
JOURNAL OF APPLIED ECOLOGY, 2000, 37 (05) :706-727
[44]   Likelihood ratio, score, and Wald tests in a constrained parameter space [J].
Molenberghs, Geert ;
Verbeke, Geert .
AMERICAN STATISTICIAN, 2007, 61 (01) :22-27
[45]   What are the advantages of MCMC based inference in latent variable models? [J].
Paap, R .
STATISTICA NEERLANDICA, 2002, 56 (01) :2-22
[46]   Estimation of genetic and environmental factors for binary traits using family data [J].
Pawitan, Y ;
Reilly, M ;
Nilsson, E ;
Cnattingius, S ;
Lichtenstein, P .
STATISTICS IN MEDICINE, 2004, 23 (03) :449-465
[47]  
Pfister CA, 2003, ECOLOGY, V84, P496, DOI 10.1890/0012-9658(2003)084[0496:IVAESI]2.0.CO
[48]  
2
[49]  
Pinheiro J., 2000, Mixed-effects models in S and S-PLUS, DOI [10.1007/b98882, DOI 10.1007/B98882]
[50]   Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models [J].
Pinheiro, JC ;
Chao, EC .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (01) :58-81