Tethering naturally occurring peptide toxins for cell-autonomous modulation of ion channels and receptors in vivo

被引:66
作者
Ibañez-Tallon, I
Wen, H
Miwa, JM
Xing, J
Tekinay, AB
Ono, F
Brehm, P
Heintz, N
机构
[1] Rockefeller Univ, Howard Hughes Med Inst, Mol Biol Lab, New York, NY 10021 USA
[2] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.neuron.2004.07.015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The physiologies of cells depend on electrochemical signals carried by ion channels and receptors. Venomous animals produce an enormous variety of peptide toxins with high affinity for specific ion channels and receptors. The mammalian prototoxin lynx1 shares with alpha-bungarotoxin the ability to bind and modulate nicotinic receptors (nAChRs); however, lynx1 is tethered to the membrane via a GPI anchor. We show here that several classes of neurotoxins, including bungarotoxins and cobratoxins, retain their selective antagonistic properties when tethered to the membrane. Targeted elimination of nAChR function in zebrafish can be achieved with tethered alpha-bungarotoxin, silencing synaptic transmission without perturbing synapse formation. These studies harness the pharmacological properties of peptide toxins for use in genetic experiments. When combined with specific methods of cell and temporal expression, the extension of this approach to hundreds of naturally occurring peptide toxins opens a new landscape for cell-autonomous regulation of cellular physiology in vivo.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 41 条
[1]   NEUROTOXINS - OVERVIEW OF AN EMERGING RESEARCH TECHNOLOGY [J].
ADAMS, ME ;
OLIVERA, BM .
TRENDS IN NEUROSCIENCES, 1994, 17 (04) :151-155
[2]   NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala [J].
Bauer, EP ;
Schafe, GE ;
LeDoux, JE .
JOURNAL OF NEUROSCIENCE, 2002, 22 (12) :5239-5249
[3]   A new alpha-conotoxin which targets alpha 3 beta 2 nicotinic acetylcholine receptors [J].
Cartier, GE ;
Yoshikami, DJ ;
Gray, WR ;
Luo, SQ ;
Olivera, BM ;
McIntosh, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (13) :7522-7528
[4]  
Catterall W A, 1999, Adv Neurol, V79, P441
[5]   Knockout and knockin mice to investigate the role of nicotinic receptors in the central nervous system [J].
Champtiaux, N ;
Changeux, JP .
ACETYLCHOLINE IN THE CEREBRAL CORTEX, 2004, 145 :235-251
[6]   Molecular diversity of K+ channels [J].
Coetzee, WA ;
Amarillo, Y ;
Chiu, J ;
Chow, A ;
Lau, D ;
McCormack, T ;
Moreno, H ;
Nadal, MS ;
Ozaita, A ;
Pountney, D ;
Saganich, M ;
Vega-Saenz de Miera, E ;
Rudy, B .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :233-285
[7]   Targeting multi-cellular organisms [J].
Gong, M ;
Rong, YS .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2003, 13 (02) :215-220
[8]   A gene expression atlas of the central nervous system based on bacterial artificial chromosomes [J].
Gong, SC ;
Zheng, C ;
Doughty, ML ;
Losos, K ;
Didkovsky, N ;
Schambra, UB ;
Nowak, NJ ;
Joyner, A ;
Leblanc, G ;
Hatten, ME ;
Heintz, N .
NATURE, 2003, 425 (6961) :917-925
[9]   Differential roles for disulfide bonds in the structural integrity and biological activity of κ-bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist [J].
Grant, GA ;
Luetje, CW ;
Summers, R ;
Xu, XL .
BIOCHEMISTRY, 1998, 37 (35) :12166-12171
[10]   An H-bond between two residues from different loops of the acetylcholine binding site contributes to the activation mechanism of nicotinic receptors [J].
Grutter, T ;
de Carvalho, LP ;
Le Novère, N ;
Corringer, PJ ;
Edelstein, S ;
Changeux, JP .
EMBO JOURNAL, 2003, 22 (09) :1990-2003