Dynamical mean-field study of the Mott transition in the half-filled Hubbard model on a triangular lattice

被引:52
作者
Aryanpour, K. [1 ]
Pickett, W. E. [1 ]
Scalettar, R. T. [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
D O I
10.1103/PhysRevB.74.085117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We employ dynamical mean-field theory (DMFT) with a quantum Monte Carlo atomic solver to investigate the finite-temperature Mott transition in the Hubbard model with nearest-neighbor hopping on a triangular lattice at half-filling. We estimate the value of the critical interaction to be U-c=12.0 +/- 0.5 in units of the hopping amplitude t through the evolution of the magnetic moment, spectral function, internal energy, and specific heat as the interaction U and temperature T are varied. This work also presents a comparison between DMFT and finite-size determinant quantum Monte Carlo calculations and a discussion of the advantages and limitations of both methods.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Magnetic correlations in the Hubbard model on triangular and kagome lattices [J].
Bulut, N ;
Koshibae, W ;
Maekawa, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)
[2]   Mott metal-insulator transition in the half-filled Hubbard model on the triangular lattice [J].
Capone, M ;
Capriotti, L ;
Becca, F ;
Caprara, S .
PHYSICAL REVIEW B, 2001, 63 (08)
[3]  
CORTES R, CONDMAT0601029
[4]   Specific heat of the two-dimensional Hubbard model [J].
Duffy, D ;
Moreo, A .
PHYSICAL REVIEW B, 1997, 55 (19) :12918-12924
[5]  
Fetter A. L., 2003, Quantum Theory of Many-Particle Systems
[6]   MONTE-CARLO STUDY OF THE SYMMETRIC ANDERSON-IMPURITY MODEL [J].
FYE, RM ;
HIRSCH, JE .
PHYSICAL REVIEW B, 1988, 38 (01) :433-441
[7]  
GALITSKII VM, 1958, SOV PHYS JETP-USSR, V7, P96
[8]   PHYSICAL-PROPERTIES OF THE HALF-FILLED HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW B, 1993, 48 (10) :7167-7182
[9]   NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1240-1243
[10]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125