Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor

被引:59
作者
Sun, Qizhen [1 ,2 ]
Sun, Xiaohui [1 ]
Jia, Weihua [1 ]
Xu, Zhilin [1 ]
Luo, Haipeng [1 ]
Liu, Deming [1 ]
Zhang, Lin [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Peoples R China
[2] Aston Univ, Aston Inst Photon Technol, Birmingham B4 7ET, W Midlands, England
基金
中国国家自然科学基金;
关键词
Microfiber; graphene; evanescent field; temperature sensor; RESONATOR;
D O I
10.1109/LPT.2015.2495107
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Combined the large evanescent field of microfiber with the high thermal conductivity of graphene, a sensitive all-fiber temperature sensor based on graphene-assisted microfiber is proposed and experimentally demonstrated. Microfiber can be easily attached with graphene due to the electrostatic force, resulting in an effective interaction between graphene and the evanescent field of microfiber. The change of the ambient temperature has a great influence on the conductivity of graphene, leading to the variation of the effective refractive index of microfiber. Consequently, the optical power transmission will be changed. The temperature sensitivity of 0.1018 dB/degrees C in the heating process and 0.1052 dB/degrees C in the cooling process as well as a high resolution of 0.0098 degrees C is obtained in the experiment. The scheme may have great potential in sensing fields owing to the advantages of high sensitivity, compact size, and low cost.
引用
收藏
页码:383 / 386
页数:4
相关论文
共 21 条
[1]  
Bao QL, 2011, NAT PHOTONICS, V5, P411, DOI [10.1038/nphoton.2011.102, 10.1038/NPHOTON.2011.102]
[2]   Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics [J].
Bao, Qiaoliang ;
Zhang, Han ;
Yang, Jia-xiang ;
Wang, Shuai ;
Tong, Ding Yuan ;
Jose, Rajan ;
Ramakrishna, Seeram ;
Lim, Chwee Teck ;
Loh, Kian Ping .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (05) :782-791
[3]   Atomically Thin Surface Cloak Using Graphene Monolayers [J].
Chen, Pai-Yen ;
Alu, Andrea .
ACS NANO, 2011, 5 (07) :5855-5863
[4]  
Feldman A., 1978, 993 NBS US DEP COMM
[5]   Experimental observation of mode evolution in single-mode tapered optical fibers [J].
Fielding, AJ ;
Edinger, K ;
Davis, CC .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (09) :1649-1656
[6]   Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene [J].
Hanson, George W. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
[7]   Microfiber loop resonator based temperature sensor [J].
Harun, S. W. ;
Lim, K. S. ;
Damanhuri, S. S. A. ;
Ahmad, H. .
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2011, 6 :35
[8]   Ultrafast All-Optical Graphene Modulator [J].
Li, Wei ;
Chen, Bigeng ;
Meng, Chao ;
Fang, Wei ;
Xiao, Yao ;
Li, Xiyuan ;
Hu, Zhifang ;
Xu, Yingxin ;
Tong, Limin ;
Wang, Hongqing ;
Liu, Weitao ;
Bao, Jiming ;
Shen, Y. Ron .
NANO LETTERS, 2014, 14 (02) :955-959
[9]   Highly sensitive temperature sensor based on D-shaped microfiber with high birefringence [J].
Luo, Haipeng ;
Sun, Qizhen ;
Xu, Zhilin ;
Jia, Weihua ;
Liu, Deming .
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
[10]   Measurement of the Optical Conductivity of Graphene [J].
Mak, Kin Fai ;
Sfeir, Matthew Y. ;
Wu, Yang ;
Lui, Chun Hung ;
Misewich, James A. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)