Mixed initial conditions to estimate the dynamic critical exponent in short-time Monte Carlo simulation

被引:46
作者
da Silva, R [1 ]
Alves, NA [1 ]
de Felício, JRD [1 ]
机构
[1] Univ Sao Paulo, Dept Fis & Matemat, FFCLRP, BR-01404090 Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
short-time dynamics; critical phenomena; dynamic exponent; Ising model; Potts model; Monte Carlo simulations;
D O I
10.1016/S0375-9601(02)00571-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the initial conditions in short-time critical dynamics to propose an alternative way to evaluate the dynamic exponent z. Estimates are obtained with high precision for the 2D Ising model and the 2D Potts model with three and four states by performing heat-bath Monte Carlo simulations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:325 / 329
页数:5
相关论文
共 34 条
[1]  
BARBER M, 1973, PHASE TRANSITIONS CR, V8
[2]   CRITICAL-DYNAMICS OF THE Q-STATE POTTS-MODEL IN 2 DIMENSIONS [J].
BONFIM, OFD .
EUROPHYSICS LETTERS, 1987, 4 (03) :373-376
[3]   THE DYNAMIC CRITICAL EXPONENT OF THE Q=3 AND Q=4 STATE POTTS-MODEL [J].
DE ARCANGELIS, L ;
JAN, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18) :L1179-L1183
[4]   SCALING FOR 1ST-ORDER PHASE-TRANSITIONS IN THERMODYNAMIC AND FINITE SYSTEMS [J].
FISHER, ME ;
BERKER, AN .
PHYSICAL REVIEW B, 1982, 26 (05) :2507-2513
[5]   SCALING THEORY FOR FINITE-SIZE EFFECTS IN CRITICAL REGION [J].
FISHER, ME ;
BARBER, MN .
PHYSICAL REVIEW LETTERS, 1972, 28 (23) :1516-&
[6]   DAMAGE SPREADING AND CRITICAL EXPONENTS FOR MODEL-A ISING DYNAMICS [J].
GRASSBERGER, P .
PHYSICA A, 1995, 214 (04) :547-559
[7]   RENORMALIZATION-GROUP METHODS FOR CRITICAL DYNAMICS .1. RECURSION RELATIONS AND EFFECTS OF ENERGY CONSERVATION [J].
HALPERIN, BI ;
HOHENBER.PC ;
MA, S .
PHYSICAL REVIEW B, 1974, 10 (01) :139-153
[8]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[9]   REMANENT MAGNETIZATION DECAY AT THE SPIN-GLASS CRITICAL-POINT - A NEW DYNAMIC CRITICAL EXPONENT FOR NONEQUILIBRIUM AUTOCORRELATIONS [J].
HUSE, DA .
PHYSICAL REVIEW B, 1989, 40 (01) :304-308
[10]   NONEQUILIBRIUM RELAXATION AND INTERFACE ENERGY OF THE ISING-MODEL [J].
ITO, N .
PHYSICA A, 1993, 196 (04) :591-614