Mixed initial conditions to estimate the dynamic critical exponent in short-time Monte Carlo simulation

被引:46
作者
da Silva, R [1 ]
Alves, NA [1 ]
de Felício, JRD [1 ]
机构
[1] Univ Sao Paulo, Dept Fis & Matemat, FFCLRP, BR-01404090 Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
short-time dynamics; critical phenomena; dynamic exponent; Ising model; Potts model; Monte Carlo simulations;
D O I
10.1016/S0375-9601(02)00571-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the initial conditions in short-time critical dynamics to propose an alternative way to evaluate the dynamic exponent z. Estimates are obtained with high precision for the 2D Ising model and the 2D Potts model with three and four states by performing heat-bath Monte Carlo simulations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:325 / 329
页数:5
相关论文
共 34 条
[21]   FINITE-SIZE EFFECTS AT 1ST-ORDER TRANSITIONS [J].
PRIVMAN, V ;
FISHER, ME .
JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (02) :385-417
[22]   UNIVERSAL CRITICAL AMPLITUDES IN FINITE-SIZE SCALING [J].
PRIVMAN, V ;
FISHER, ME .
PHYSICAL REVIEW B, 1984, 30 (01) :322-327
[23]   Microscopic nonuniversality versus macroscopic universality in algorithms for critical dynamics [J].
Ritschel, U ;
Czerner, P .
PHYSICAL REVIEW E, 1997, 55 (04) :3958-3961
[24]   Determination of the critical point and exponents from short-time dynamics [J].
Schulke, L ;
Zheng, B .
PHYSICS LETTERS A, 1996, 215 (1-2) :81-85
[25]   Dynamic critical exponents of the Ising model with multispin interactions [J].
Simoes, CS ;
De Felício, JRD .
MODERN PHYSICS LETTERS B, 2001, 15 (15) :487-496
[26]   KINETICS OF CLUSTERS IN ISING-MODELS [J].
STAUFFER, D .
PHYSICA A, 1992, 186 (1-2) :197-209
[27]   STATIC AND DYNAMIC FINITE-SIZE SCALING THEORY BASED ON RENORMALIZATION GROUP APPROACH [J].
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (04) :1142-1150
[28]   Universality in dynamic critical phenomena [J].
Wang, FG ;
Hu, CK .
PHYSICAL REVIEW E, 1997, 56 (02) :2310-2313
[29]   STUDY ON DYNAMICAL CRITICAL EXPONENTS OF THE ISING-MODEL USING THE DAMAGE SPREADING METHOD [J].
WANG, FG ;
HATANO, N ;
SUZUKI, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (16) :4543-4552
[30]   Short-time critical dynamics of multispin interaction Ising model in two dimensions [J].
Wang, L ;
Zhang, JB ;
Ying, HP ;
Ji, DR .
MODERN PHYSICS LETTERS B, 1999, 13 (28) :1011-1018