Asymmetric vortex solitons in nonlinear periodic lattices

被引:107
作者
Alexander, TJ [1 ]
Sukhorukov, AA
Kivshar, YS
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Res Sch Phys Sci & Engn, Ctr Ultrahigh Bandwidth Devices Opt Syst, Canberra, ACT 0200, Australia
关键词
D O I
10.1103/PhysRevLett.93.063901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We reveal the existence of asymmetric vortex solitons in ideally symmetric periodic lattices and show how such nonlinear localized structures describing elementary circular flows can be analyzed systematically using the energy-balance relations. We present the examples of rhomboid, rectangular, and triangular vortex solitons on a square lattice and also describe novel coherent states where the populations of clockwise and anticlockwise vortex modes change periodically due to a nonlinearity-induced momentum exchange through the lattice. Asymmetric vortex solitons are expected to exist in different nonlinear lattice systems, including optically induced photonic lattices, nonlinear photonic crystals, and Bose-Einstein condensates in optical lattices.
引用
收藏
页码:063901 / 1
页数:4
相关论文
共 22 条
[1]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[2]  
Bartal G, 2001, PHYS REV LETT, V92
[3]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[4]   Rotating optical soliton clusters [J].
Desyatnikov, AS ;
Kivshar, YS .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4
[5]   Two-dimensional optical lattice solitons [J].
Efremidis, NK ;
Hudock, J ;
Christodoulides, DN ;
Fleischer, JW ;
Cohen, O ;
Segev, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (21)
[6]   THE DISCRETE SELF-TRAPPING EQUATION [J].
EILBECK, JC ;
LOMDAHL, PS ;
SCOTT, AC .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 16 (03) :318-338
[7]  
EILBECK JC, NLINPS0211049
[8]   Dynamics of breathers in discrete nonlinear Schrodinger models [J].
Johansson, M ;
Aubry, S ;
Gaididei, YB ;
Christiansen, PL ;
Rasmussen, KO .
PHYSICA D, 1998, 119 (1-2) :115-124
[9]   Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity [J].
Kevrekidis, PG ;
Malomed, BA ;
Gaididei, YB .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016609
[10]   PROOF OF EXISTENCE OF BREATHERS FOR TIME-REVERSIBLE OR HAMILTONIAN NETWORKS OF WEAKLY COUPLED OSCILLATORS [J].
MACKAY, RS ;
AUBRY, S .
NONLINEARITY, 1994, 7 (06) :1623-1643