A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract

被引:39
作者
Chakravarty, A
Howard, L
Compton, DA [1 ]
机构
[1] Dartmouth Coll Sch Med, Dept Biochem, Hanover, NH 03755 USA
[2] Dartmouth Coll Sch Med, Rippel Elect Microscope Facil, Hanover, NH 03755 USA
关键词
D O I
10.1091/mbc.E03-08-0579
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We used computer simulation to understand the functional relationships between motor (dynein, HSET, and Eg5) and non-motor (NuMA) proteins involved in microtubule aster organization. The simulation accurately predicted microtubule organization under all combinations of motor and non-motor proteins, provided that microtubule cross-links at minus-ends were dynamic, and dynein and HSET were restricted to cross-linking microtubules in parallel orientation only. A mechanistic model was derived from these data in which a combination of two aggregate properties, Net Minus-end-directed Force and microtubule Cross-linking Orientation Bias, determine microtubule organization. This model uses motor and non-motor proteins, accounts for motor antagonism, and predicts that alterations in microtubule Cross-linking Orientation Bias should compensate for imbalances in motor force during microtubule aster formation. We tested this prediction in the mammalian mitotic extract and, consistent with the model, found that increasing the contribution of microtubule cross-linking by NuMA compensated for the loss of Eg5 motor activity. Thus, this model proposes a precise mechanism of action of each noncentrosomal. protein during microtubule aster organization and suggests that microtubule organization in spindles involves both motile forces from motors and static forces from non-motor cross-linking proteins.
引用
收藏
页码:2116 / 2132
页数:17
相关论文
共 68 条
[11]  
2-X
[12]   Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis [J].
Echeverri, CJ ;
Paschal, BM ;
Vaughan, KT ;
Vallee, RB .
JOURNAL OF CELL BIOLOGY, 1996, 132 (04) :617-633
[13]   The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement [J].
Funabiki, H ;
Murray, AW .
CELL, 2000, 102 (04) :411-424
[14]   NUMA IS REQUIRED FOR THE ORGANIZATION OF MICROTUBULES INTO ASTER-LIKE MITOTIC ARRAYS [J].
GAGLIO, T ;
SAREDI, A ;
COMPTON, DA .
JOURNAL OF CELL BIOLOGY, 1995, 131 (03) :693-708
[15]   Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes [J].
Gaglio, T ;
Dionne, MA ;
Compton, DA .
JOURNAL OF CELL BIOLOGY, 1997, 138 (05) :1055-1066
[16]   Opposing motor activities are required for the organization of the mammalian mitotic spindle pole [J].
Gaglio, T ;
Saredi, A ;
Bingham, JB ;
Hasbani, MJ ;
Gill, SR ;
Schroer, TA ;
Compton, DA .
JOURNAL OF CELL BIOLOGY, 1996, 135 (02) :399-414
[17]   hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division [J].
Garrett, S ;
Auer, K ;
Compton, DA ;
Kapoor, TM .
CURRENT BIOLOGY, 2002, 12 (23) :2055-2059
[18]   DYNACTIN, A CONSERVED, UBIQUITOUSLY EXPRESSED COMPONENT OF AN ACTIVATOR OF VESICLE MOTILITY MEDIATED BY CYTOPLASMIC DYNEIN [J].
GILL, SR ;
SCHROER, TA ;
SZILAK, I ;
STEUER, ER ;
SHEETZ, MP ;
CLEVELAND, DW .
JOURNAL OF CELL BIOLOGY, 1991, 115 (06) :1639-1650
[19]   Processivity of the motor protein kinesin requires two heads [J].
Hancock, WO ;
Howard, J .
JOURNAL OF CELL BIOLOGY, 1998, 140 (06) :1395-1405
[20]  
Haren L, 2002, J CELL SCI, V115, P1815