Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions

被引:54
作者
Fukai, H [1 ]
Doi, S
Nomura, T
Sato, S
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Syst & Human Sci, Div Biophys Engn, Osaka 5608531, Japan
[2] Osaka Univ, Grad Sch Engn, Dept Elect Engn, Suita, Osaka 5650871, Japan
关键词
D O I
10.1007/s004220050021
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Hodgkin-Huxley equations (HH) are parameterized by a number of parameters and shows a variety of qualitatively different behaviors depending on the parameter values. We explored the dynamics of the HHfor a wide range of parameter values in the multiple-parameter space? that is, we examined the global structure of bifurcations of the HH. Results are summarized in various two-parameter bifurcation diagrams with I-ext (externally applied DC current) as the abscissa and one of the other parameters as the ordinate. In each diagram, the parameter plane was divided into several regions according to the qualitative behavior of the equations. In particular, we focused on periodic solutions emerging via Hopf bifurcations and identified parameter regions in which either two stable periodic solutions with different amplitudes and periods and a stable equilibrium point or two stable periodic solutions coexist. Global analysis of the bifurcation structure suggested that generation of these regions is associated with degenerate Hopf bifurcations.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 24 条
[1]   2 STABLE STEADY-STATES IN THE HODGKIN-HUXLEY AXONS [J].
AIHARA, K ;
MATSUMOTO, G .
BIOPHYSICAL JOURNAL, 1983, 41 (01) :87-89
[2]   ON THE DYNAMICS OF BURSTING SYSTEMS [J].
ALEXANDER, JC ;
CAI, DY .
JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (05) :405-423
[3]   ON THE RELATIONSHIP BETWEEN THE NUMBER OF NEGATIVE SLOPE REGIONS IN THE VOLTAGE-CURRENT CURVE OF THE HODGKIN-HUXLEY MODEL AND ITS PARAMETER VALUES [J].
BEDROV, YA ;
AKOEV, GN ;
DICK, OE .
BIOLOGICAL CYBERNETICS, 1995, 73 (02) :149-154
[4]   PARTITION OF THE HODGKIN-HUXLEY TYPE MODEL PARAMETER SPACE INTO THE REGIONS OF QUALITATIVELY DIFFERENT SOLUTIONS [J].
BEDROV, YA ;
AKOEV, GN ;
DICK, OE .
BIOLOGICAL CYBERNETICS, 1992, 66 (05) :413-418
[5]  
CHAY TR, 1988, MATH BIOSCI, V90, P139
[6]  
DOEDEL E, 1986, AUTO SOFTWARE CONTIN
[7]   Review of ionic models of vagal-cardiac pacemaker control [J].
Dokos, S ;
Lovell, NH ;
Celler, BG .
JOURNAL OF THEORETICAL BIOLOGY, 1998, 192 (03) :265-274
[8]   Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations II. Singularity theoretic approach and highly degenerate bifurcations [J].
Fukai, H ;
Nomura, T ;
Doi, S ;
Sato, S .
BIOLOGICAL CYBERNETICS, 2000, 82 (03) :223-229
[9]   MAPPING THE DYNAMICS OF A BURSTING NEURON [J].
GUCKENHEIMER, J ;
GUERON, S ;
HARRISWARRICK, RM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1993, 341 (1298) :345-359
[10]   BIFURCATION OF THE HODGKIN AND HUXLEY EQUATIONS - A NEW TWIST [J].
GUCKENHEIMER, J ;
LABOURIAU, IS .
BULLETIN OF MATHEMATICAL BIOLOGY, 1993, 55 (05) :937-952