Criticality on networks with topology-dependent interactions

被引:26
作者
Giuraniuc, C. V. [1 ]
Hatchett, J. P. L.
Indekeu, J. O.
Leone, M.
Perez Castillo, I.
Van Schaeybroeck, B.
Vanderzande, C.
机构
[1] Katholieke Univ Leuven, Vaste Stof Fys & Magnetisme Lab, B-3001 Heverlee, Belgium
[2] RIKEN Brain Sci Inst, Lab Math Neurosci, Wako, Saitama 3510198, Japan
[3] ISI, I-10133 Turin, Italy
[4] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[5] Hasselt Univ, Dept WNI, B-3590 Diepenbeek, Belgium
关键词
D O I
10.1103/PhysRevE.74.036108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Weighted scale-free networks with topology-dependent interactions are studied. It is shown that the possible universality classes of critical behavior, which are known to depend on topology, can also be explored by tuning the form of the interactions at fixed topology. For a model of opinion formation, simple mean field and scaling arguments show that a mapping gamma(')=(gamma-mu)/(1-mu) describes how a shift of the standard exponent gamma of the degree distribution can absorb the effect of degree-dependent pair interactions J(ij)proportional to(k(i)k(j))(-mu), where k(i) stands for the degree of vertex i. This prediction is verified by extensive numerical investigations using the cavity method and Monte Carlo simulations. The critical temperature of the model is obtained through the Bethe-Peierls approximation and with the replica technique. The mapping can be extended to nonequilibrium models such as those describing the spreading of a disease on a network.
引用
收藏
页数:16
相关论文
共 47 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Ferromagnetic phase transition in Barabasi-Albert networks [J].
Aleksiejuk, A ;
Holyst, JA ;
Stauffer, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) :260-266
[3]   Complex networks - Augmenting the framework for the study of complex systems [J].
Amaral, LAN ;
Ottino, JM .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :147-162
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]  
Baxter R, 1982, Exactly Solved Models in Statistical Mechanics Academic
[6]   Number of loops of size h in growing scale-free networks -: art. no. 078701 [J].
Bianconi, G ;
Capocci, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (07) :4
[7]   Mean field solution of the Ising model on a Barabasi-Albert network [J].
Bianconi, G .
PHYSICS LETTERS A, 2002, 303 (2-3) :166-168
[8]  
Binder K, 2003, AIP CONF PROC, V690, P74, DOI 10.1063/1.1632119
[9]   CRITICAL PROPERTIES FROM MONTE-CARLO COARSE GRAINING AND RENORMALIZATION [J].
BINDER, K .
PHYSICAL REVIEW LETTERS, 1981, 47 (09) :693-696
[10]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140