Mean field solution of the Ising model on a Barabasi-Albert network

被引:153
作者
Bianconi, G [1 ]
机构
[1] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
networks; Curie temperature; mean field approximation; critical phenomena;
D O I
10.1016/S0375-9601(02)01232-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The mean field solution of the Ising model on a Barabasi-Albert scale-free network with ferromagnetic coupling between linked spins is presented. The critical temperature T-c for the ferromagnetic to paramagnetic phase transition (Curie temperature) is infinite and the effective critical temperature for a finite size system increases as the logarithm of the system size in agreement with recent numerical results of Aleksiejuk, Holyst and Stauffer. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:166 / 168
页数:3
相关论文
共 13 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Ferromagnetic phase transition in Barabasi-Albert networks [J].
Aleksiejuk, A ;
Holyst, JA ;
Stauffer, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) :260-266
[3]  
Amit DJ, 1989, MODELING BRAIN FUNCT, DOI DOI 10.1017/CBO9780511623257
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Breakdown of the internet under intentional attack [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3682-3685
[6]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628
[7]  
DOROGOVTSEV SN, CONDMAT0203227
[8]   Lethality and centrality in protein networks [J].
Jeong, H ;
Mason, SP ;
Barabási, AL ;
Oltvai, ZN .
NATURE, 2001, 411 (6833) :41-42
[9]  
LEONE M, CONDMAT0203416
[10]   SOLVABLE SPIN SYSTEMS WITH RANDOM INTERACTIONS [J].
MATTIS, DC .
PHYSICS LETTERS A, 1976, 56 (05) :421-422