Controlling the morphology of mesostructured silicas by pseudomorphic transformation: A route towards applications

被引:151
作者
Galarneau, Anne
Iapichella, Julien
Bonhomme, Karine
Di Renzo, Francesco
Kooyman, Patricia
Terasaki, Osamu
Fajula, Francois
机构
[1] UM1, ENSCM, Inst Gerhardt FR 1878, Lab Mat Catalyt & Catalyse Chim Organ,CNRS,UMR 56, F-34296 Montpellier 5, France
[2] Delft Univ Technol, NCHREM, DelftChemTech, NL-2628 BL Delft, Netherlands
[3] Univ Stockholm, Arrhenius Lab, S-10691 Stockholm, Sweden
关键词
D O I
10.1002/adfm.200500825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Micelle-templated silicas (MTSs) such as MCM-41 and MCM-48 feature unique textural properties owing to their uniform distribution of mesopores with tunable sizes. MTS synthesis is relevant to unique self-assembly processes between surfactants and inorganic matter. The properties of MTSs have been explored in view of applications in fields as diverse as catalysis, chromatography, sensing, photonics, optics, drug delivery, etc. The aim of this contribution is to review, and to highlight by new results, a synthesis strategy we have developed since 2002 to control the particle morphology of MTSs at the micro- to millimeter scale, a key step for transferring these materials from the status of beautiful artworks to applicable products. It is based on the concept of pseudomorphic synthesis. Pseudomorphism is well known in the mineral world. It allows Preparation of a mineral with a morphology that is not related to its crystallographic symmetry group. The resulting mineral assumes the outward crystal habit of a different mineral. This principle occurs at a nonconstant matter content by using a mineralization solution that exchanges anions (or cations) with an existing (Preshaped) solid body, and allows the new structure to precipitate while maintaining the existing morphology. The concept of pseudomorphic transformation is now applied to amorphous preshaped silica particles to produce MTSs with the same morphology, using an alkaline solution to dissolve the silica and reprecipitate it around surfactant micelles into the ordered MTS structures. MTSs with hexagonal and cubic symmetry, different pore sizes, and controlled morphology have been synthesized. The new pseudomorphs have been successfully used as supports in chromatography, a very demanding application in terms of particle size and morphology.
引用
收藏
页码:1657 / 1667
页数:11
相关论文
共 52 条
[1]  
[Anonymous], 2002, J PHOTOCHEM PHOTOB C
[2]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[3]   Tailoring pore size of ordered mesoporous silicas using one or two organic auxiliaries as expanders [J].
Blin, JL ;
Su, BL .
LANGMUIR, 2002, 18 (13) :5303-5308
[4]   Pore size engineering of mesoporous silicas using decane as expander [J].
Blin, JL ;
Otjacques, C ;
Herrier, G ;
Su, BL .
LANGMUIR, 2000, 16 (09) :4229-4236
[5]   A double step synthesis of mesoporous micrometric spherical MSU-X silica particles [J].
Boissière, C ;
van der Lee, A ;
El Mansouri, A ;
Larbot, A ;
Prouzet, E .
CHEMICAL COMMUNICATIONS, 1999, (20) :2047-2048
[6]  
BOSCARDIN M, 1989, MINERALI VAL LEOGRA
[7]   Inclusion of ibuprofen in mesoporous templated silica:: drug loading and release property [J].
Charnay, C ;
Bégu, S ;
Tourné-Péteilh, C ;
Nicole, L ;
Lerner, DA ;
Devoisselle, JM .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 57 (03) :533-540
[8]   INORGANIC SOLID ACIDS AND THEIR USE IN ACID-CATALYZED HYDROCARBON REACTIONS [J].
CORMA, A .
CHEMICAL REVIEWS, 1995, 95 (03) :559-614
[9]   Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography [J].
DePhillips, P ;
Lenhoff, AM .
JOURNAL OF CHROMATOGRAPHY A, 2000, 883 (1-2) :39-54
[10]  
DESPLANTIERGISC.D, 2001, STUD SURF SCI CATAL, V135, P1105