The protein folding network

被引:320
作者
Rao, F [1 ]
Caflisch, A [1 ]
机构
[1] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
关键词
complex networks; protein folding; energy landscape; transition state; denatured state ensemble;
D O I
10.1016/j.jmb.2004.06.063
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The conformation space of a 20 residue antiparallel beta-sheet peptide, sampled by molecular dynamics simulations, is mapped to a network. Snapshots saved along the trajectory are grouped according to secondary structure into nodes of the network and the transitions between them are links. The conformation space network describes the significant free energy minima and their dynamic connectivity without requiring arbitrarily chosen reaction coordinates. As previously found for the Internet and the World-Wide Web as well as for social and biological networks, the conformation space network is scale-free and contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the native basin exhibits a hierarchical organization, which is not found for a random heteropolymer lacking a predominant free-energy minimum. The network topology is used to identify conformations in the folding transition state (TS) ensemble, and provides a basis for understanding the heterogeneity of the TS and denatured state ensemble as well as the existence of multiple pathways. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:299 / 306
页数:8
相关论文
共 41 条
[1]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[2]   Continuum secondary structure captures protein flexibility [J].
Anderson, CAF ;
Palmer, AG ;
Brunak, S ;
Rost, B .
STRUCTURE, 2002, 10 (02) :175-184
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]   The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics [J].
Becker, OM ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (04) :1495-1517
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   INTERMEDIATES AND BARRIER CROSSING IN A RANDOM ENERGY-MODEL (WITH APPLICATIONS TO PROTEIN FOLDING) [J].
BRYNGELSON, JD ;
WOLYNES, PG .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) :6902-6915
[7]   Fast protein folding on downhill energy landscape [J].
Cavalli, A ;
Haberthür, U ;
Paci, E ;
Caflisch, A .
PROTEIN SCIENCE, 2003, 12 (08) :1801-1803
[8]   Weak temperature dependence of the free energy surface and folding pathways of structured peptides [J].
Cavalli, A ;
Ferrara, P ;
Caflisch, A .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2002, 47 (03) :305-314
[9]  
Chan HS, 1998, PROTEINS, V30, P2, DOI 10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO
[10]  
2-R