Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency

被引:673
作者
Zhao, Fuwen [1 ,2 ]
Dai, Shuixing [1 ,3 ]
Wu, Yang [4 ]
Zhang, Qianqian [5 ]
Wang, Jiayu [1 ]
Jiang, Li [2 ]
Ling, Qidan [3 ]
Wei, Zhixiang [6 ]
Ma, Wei [4 ]
You, Wei [5 ]
Wang, Chunru [2 ]
Zhan, Xiaowei [1 ]
机构
[1] Peking Univ, Minist Educ, Key Lab Polymer Chem & Phys, Dept Mat Sci & Engn,Coll Engn, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
[3] Fujian Normal Univ, Coll Mat Sci & Engn, Fujian Key Lab Polymer Mat, Fuzhou 350007, Peoples R China
[4] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[5] Univ North Carolina Chapel Hill, Dept Chem, Chapel Hill, NC 27599 USA
[6] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
POWER CONVERSION EFFICIENCY; SMALL-MOLECULE ACCEPTOR; ELECTRON-ACCEPTORS; ORGANIC PHOTOVOLTAICS; BUILDING-BLOCKS; 3D STRUCTURE; FULLERENE; PERFORMANCE; SEMICONDUCTORS; DESIGN;
D O I
10.1002/adma.201700144
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new fluorinated nonfullerene acceptor, ITIC-Th1, has been designed and synthesized by introducing fluorine (F) atoms onto the end-capping group 1,1-dicyanomethylene-3-indanone (IC). On the one hand, incorporation of F would improve intramolecular interaction, enhance the push-pull effect between the donor unit indacenodithieno[3,2-b] thiophene and the acceptor unit IC due to electron-withdrawing effect of F, and finally adjust energy levels and reduce bandgap, which is beneficial to light harvesting and enhancing short-circuit current density (JSC). On the other hand, incorporation of F would improve intermolecular interactions through C. F center dot center dot center dot S, C. F center dot center dot center dot H, and C. F center dot center dot center dot pi noncovalent interactions and enhance electron mobility, which is beneficial to enhancing JSC and fill factor. Indeed, the results show that fluorinated ITIC-Th1 exhibits redshifted absorption, smaller optical bandgap, and higher electron mobility than the nonfluorinated ITIC-Th. Furthermore, nonfullerene organic solar cells (OSCs) based on fluorinated ITIC-Th1 electron acceptor and a wide-bandgap polymer donor FTAZ based on benzodithiophene and benzotriazole exhibit power conversion efficiency (PCE) as high as 12.1%, significantly higher than that of nonfluorinated ITIC-Th (8.88%). The PCE of 12.1% is the highest in fullerene and nonfullerene-based single-junction binary-blend OSCs. Moreover, the OSCs based on FTAZ: ITIC-Th1 show much better efficiency and better stability than the control devices based on FTAZ: PC71BM (PCE = 5.22%).
引用
收藏
页数:7
相关论文
共 60 条
[1]   n-Type Organic Semiconductors in Organic Electronics [J].
Anthony, John E. ;
Facchetti, Antonio ;
Heeney, Martin ;
Marder, Seth R. ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2010, 22 (34) :3876-3892
[2]  
Baran D, 2017, NAT MATER, V16, P363, DOI [10.1038/NMAT4797, 10.1038/nmat4797]
[3]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[4]   Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency [J].
Bin, Haijun ;
Zhang, Zhi-Guo ;
Gao, Liang ;
Chen, Shanshan ;
Zhong, Lian ;
Xue, Lingwei ;
Yang, Changduk ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4657-4664
[5]   Realizing Small Energy Loss of 0.55 eV, High Open-Circuit Voltage > 1 V and High Efficiency > 10% in Fullerene-Free Polymer Solar Cells via Energy Driver [J].
Cheng, Pei ;
Zhang, Mingyu ;
Lau, Tsz-Ki ;
Wu, Yao ;
Jia, Boyu ;
Wang, Jiayu ;
Yan, Cenqi ;
Qin, Meng ;
Lu, Xinhui ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2017, 29 (11)
[6]   Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J].
Cheng, Yen-Ju ;
Yang, Sheng-Hsiung ;
Hsu, Chain-Shu .
CHEMICAL REVIEWS, 2009, 109 (11) :5868-5923
[7]   Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells [J].
Dai, Shuixing ;
Zhao, Fuwen ;
Zhang, Qianqian ;
Lau, Tsz-Ki ;
Li, Tengfei ;
Liu, Kuan ;
Ling, Qidan ;
Wang, Chunru ;
Lu, Xinhui ;
You, Wei ;
Zhan, Xiaowei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1336-1343
[8]   An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells [J].
Dou, Chuandong ;
Long, Xiaojing ;
Ding, Zicheng ;
Xie, Zhiyuan ;
Liu, Jun ;
Wang, Lixiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) :1436-1440
[9]   All-Polymer Solar Cells with 3.3% Efficiency Based on Naphthalene Diimide-Selenophene Copolymer Acceptor [J].
Earmme, Taeshik ;
Hwang, Ye-Jin ;
Murari, Nishit M. ;
Subramaniyan, Selvam ;
Jenekhe, Samson A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (40) :14960-14963
[10]   Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis [J].
Gann, E. ;
Young, A. T. ;
Collins, B. A. ;
Yan, H. ;
Nasiatka, J. ;
Padmore, H. A. ;
Ade, H. ;
Hexemer, A. ;
Wang, C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (04)