Macroscopic quantization in quantum optics and cavity quantum electrodynamics: Interatomic interactions

被引:20
作者
Dalton, BJ [1 ]
Babiker, M [1 ]
机构
[1] UNIV ESSEX, DEPT PHYS, COLCHESTER CO4 3SQ, ESSEX, ENGLAND
来源
PHYSICAL REVIEW A | 1997年 / 56卷 / 01期
关键词
D O I
10.1103/PhysRevA.56.905
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We extend previous work on macroscopic canonical quantization leading to a multipolar Hamiltonian appropriate for application to quantum optics and cavity QED situations involving classical optical devices. In particular, we show that the electric displacement is the negative of the conjugate momentum field and that the Coulomb and polarization energies are equal to the sum of intra-atomic Coulomb and polarization energies and interatomic contact energies. The quantum Hamiltonian is now in a form in which the theory is manifestly gauge invariant.
引用
收藏
页码:905 / 911
页数:7
相关论文
共 19 条
[11]  
HEALEY PW, 1982, NONRELATIVISTIC QUAN, pCH7
[12]   QUANTUM OPTICS IN A DIELECTRIC - MACROSCOPIC ELECTROMAGNETIC-FIELD AND MEDIUM OPERATORS FOR A LINEAR DISPERSIVE LOSSY MEDIUM - A MICROSCOPIC DERIVATION OF THE OPERATORS AND THEIR COMMUTATION RELATIONS [J].
HO, ST ;
KUMAR, P .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (09) :1620-1636
[13]   QUANTIZATION OF THE ELECTROMAGNETIC-FIELD IN DIELECTRICS [J].
HUTTNER, B ;
BARNETT, SM .
PHYSICAL REVIEW A, 1992, 46 (07) :4306-4322
[14]   ACTION OF PASSIVE, LOSSLESS OPTICAL-SYSTEMS IN QUANTUM OPTICS [J].
KNOLL, L ;
VOGEL, W ;
WELSCH, DG .
PHYSICAL REVIEW A, 1987, 36 (08) :3803-3818
[15]   ON THE RADIATIVE CONTRIBUTIONS TO THE VANDERWAALS FORCE [J].
POWER, EA ;
ZIENAU, S .
NUOVO CIMENTO, 1957, 6 (01) :7-17
[16]  
POWER EA, 1964, INTRO QUANTUM ELECTR, P106
[17]  
VOGEL W, 1994, LECT QUANTUM OPTICS, P19
[18]   GAUGE INVARIANT WAVE MECHANICS AND THE POWER-ZIENAU-WOOLLEY TRANSFORMATION [J].
WOOLLEY, RG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2795-2805
[19]   MOLECULAR QUANTUM ELECTRODYNAMICS [J].
WOOLLEY, RG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 321 (1547) :557-&