Periodic non-singular invariant series for periodic perturbations of autonomous one-degree-of-freedom Hamiltonians

被引:3
作者
Lewis, HR
机构
[1] Department of Physics and Astronomy, Dartmouth College, Hanover
关键词
non-singular invariant series; magnetic field lines; magnetic islands;
D O I
10.1016/S0375-9601(97)00709-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For periodic perturbations of autonomous 1D Hamiltonians, to all orders in powers of the perturbation parameter, non-singular invariant series periodic in the independent variable are constructed. In applications to magnetohydrodynamic equilibria, the non-singularity has allowed magnetic island structure to be represented within the framework of a perturbation treatment. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:581 / 590
页数:10
相关论文
共 9 条
[1]   A NOTE ON A HAMILTONIAN-FORMULATION OF FORCE-FREE TOROIDAL MAGNETIC-FIELDS [J].
ABRAHAMSHRAUNER, B ;
LEWIS, HR .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :2024-2025
[2]   Hamiltonian description of toroidal magnetic fields in vacuum [J].
Bates, JW ;
Lewis, HR .
PHYSICS OF PLASMAS, 1997, 4 (07) :2619-2630
[3]  
BATES JW, 1996, THESIS DARTMOUTH COL
[4]  
BATES JW, 1997, IN PRESS J PLASM OCT
[5]   INVARIANTS IN MOTION OF A CHARGED PARTICLE IN A SPATIALLY MODULATED MAGNETIC FIELD [J].
DUNNETT, DA ;
LAING, EW ;
TAYLOR, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (11) :1819-&
[6]   Time-dependent perturbation theory for the construction of invariants of Hamiltonian systems [J].
Lewis, HR ;
Bates, JW ;
Finn, JM .
PHYSICS LETTERS A, 1996, 215 (3-4) :160-166
[7]   REPRESENTATION OF MAGNETIC-FIELDS WITH TOROIDAL TOPOLOGY IN TERMS OF FIELD-LINE INVARIANTS [J].
LEWIS, HR .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (11) :2551-2562
[8]  
Lichtenberg AJ, 1992, REGULAR CHAOTIC DYNA, V38