Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory

被引:103
作者
Haxby, JV [1 ]
Petit, L
Ungerleider, LG
Courtney, SM
机构
[1] NIMH, Lab Brain & Cognit, Bethesda, MD 20892 USA
[2] Johns Hopkins Univ, Dept Psychol, Baltimore, MD 21218 USA
[3] Grp Imagerie Neurofonct, F-14074 Caen, France
关键词
D O I
10.1006/nimg.1999.0527
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We have investigated the human neural systems for visual working memory using functional magnetic resonance imaging to distinguish sustained activity during memory delays from transient responses related to perceptual and motor operations. These studies have identified six distinct frontal regions that demonstrate sustained activity during memory delays. These regions could be distinguished from brain regions in extrastriate cortex that participate more in perception and from brain regions in medial and lateral frontal cortex that participate more in motor control. Moreover, the working memory regions could be distinguished from each other based on the relative strength of their participation in spatial and face working memory and on the relative strength of sustained activity during memory delays versus transient activity related to stimulus presentation. These results demonstrate that visual working memory performance involves the concerted activity of multiple regions in a widely distributed system. Distinctions between functions, such as perception versus memory maintenance, or spatial versus face working memory, are a matter of the degree of participation of different regions, not the discrete parcellation of different functions to different modules. (C) 2000 Academic Press.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 35 条
[1]  
Baddeley A., 1986, WORKING MEMORY
[2]   Active representation of shape and spatial location in man [J].
Baker, SC ;
Frith, CD ;
Frackowiak, RSJ ;
Dolan, RJ .
CEREBRAL CORTEX, 1996, 6 (04) :612-619
[3]   Temporal dynamics of brain activation during a working memory task [J].
Cohen, JD ;
Perlstein, WM ;
Braver, TS ;
Nystrom, LE ;
Noll, DC ;
Jonides, J ;
Smith, EE .
NATURE, 1997, 386 (6625) :604-608
[4]   Transient and sustained activity in a distributed neural system for human working memory [J].
Courtney, SM ;
Ungerleider, BG ;
Keil, K ;
Haxby, JV .
NATURE, 1997, 386 (6625) :608-611
[5]   An area specialized for spatial working memory in human frontal cortex [J].
Courtney, SM ;
Petit, L ;
Maisog, JM ;
Ungerleider, LG ;
Haxby, JV .
SCIENCE, 1998, 279 (5355) :1347-1351
[6]   Object and spatial visual working memory activate separate neural systems in human cortex [J].
Courtney, SM ;
Ungerleider, LG ;
Keil, K ;
Haxby, JV .
CEREBRAL CORTEX, 1996, 6 (01) :39-49
[7]   Functional MRI studies of spatial and nonspatial working memory [J].
D'Esposito, M ;
Aguirre, GK ;
Zarahn, E ;
Ballard, D ;
Shin, RK ;
Lease, J .
COGNITIVE BRAIN RESEARCH, 1998, 7 (01) :1-13
[8]  
Fiez JA, 1996, J NEUROSCI, V16, P808
[9]   ANALYSIS OF FMRI TIME-SERIES REVISITED [J].
FRISTON, KJ ;
HOLMES, AP ;
POLINE, JB ;
GRASBY, PJ ;
WILLIAMS, SCR ;
FRACKOWIAK, RSJ ;
TURNER, R .
NEUROIMAGE, 1995, 2 (01) :45-53
[10]   MNEMONIC CODING OF VISUAL SPACE IN THE MONKEYS DORSOLATERAL PREFRONTAL CORTEX [J].
FUNAHASHI, S ;
BRUCE, CJ ;
GOLDMANRAKIC, PS .
JOURNAL OF NEUROPHYSIOLOGY, 1989, 61 (02) :331-349