Whole-cell recordings in freely moving rats

被引:184
作者
Lee, Albert K.
Manns, Ian D.
Sakmann, Bert
Brecht, Michael
机构
[1] Erasmus MC, Dept Neurosci, NL-3015 GE Rotterdam, Netherlands
[2] Max Planck Inst Med Res, Dept Cell Physiol, D-69120 Heidelberg, Germany
关键词
D O I
10.1016/j.neuron.2006.07.004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Intracellular recording, which allows direct measurement of the membrane potential and currents of individual neurons, requires a very mechanically stable preparation and has thus been limited to in vitro and head-immobilized in vivo experiments. This restriction constitutes a major obstacle for linking cellular and synaptic physiology with animal behavior. To overcome this limitation we have developed a method for performing whole-cell recordings in freely moving rats. We constructed a miniature head-mountable recording device, with mechanical stabilization achieved by anchoring the recording pipette rigidly in place after the whole-cell configuration is established. We obtain long-duration recordings (mean of similar to 20 min, maximum 60 min) in freely moving animals that are remarkably insensitive to mechanical disturbances, then reconstruct the anatomy of the recorded cells. This head-anchored whole-cell recording technique will enable a wide range of new studies involving detailed measurement and manipulation of the physiological properties of identified cells during natural behaviors.
引用
收藏
页码:399 / 407
页数:9
相关论文
共 35 条
[1]   In vivo intracellular recording and perturbation of persistent activity in a neural integrator [J].
Aksay, E ;
Gamkrelidze, G ;
Seung, HS ;
Baker, R ;
Tank, DW .
NATURE NEUROSCIENCE, 2001, 4 (02) :184-193
[2]   ELECTROPHYSIOLOGICAL CHARACTERIZATION OF DIFFERENT TYPES OF NEURONS RECORDED INVIVO IN THE MOTOR CORTEX OF THE CAT .1. PATTERNS OF FIRING ACTIVITY AND SYNAPTIC RESPONSES [J].
BARANYI, A ;
SZENTE, MB ;
WOODY, CD .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 69 (06) :1850-1864
[3]   ELECTROPHYSIOLOGICAL CHARACTERIZATION OF DIFFERENT TYPES OF NEURONS RECORDED INVIVO IN THE MOTOR CORTEX OF THE CAT .2. MEMBRANE PARAMETERS, ACTION-POTENTIALS, CURRENT-INDUCED VOLTAGE RESPONSES AND ELECTROTONIC STRUCTURES [J].
BARANYI, A ;
SZENTE, MB ;
WOODY, CD .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 69 (06) :1865-1879
[4]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[5]   Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex [J].
Brecht, M ;
Schneider, M ;
Sakmann, B ;
Margrie, TW .
NATURE, 2004, 427 (6976) :704-710
[6]   Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex [J].
Brecht, M ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 543 (01) :49-70
[7]   Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex [J].
Brecht, M ;
Roth, A ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 553 (01) :243-265
[8]  
Brecht Michael, 2005, P1
[9]   Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo [J].
Chen, DF ;
Fetz, EE .
JOURNAL OF NEUROPHYSIOLOGY, 2005, 94 (04) :2713-2725
[10]  
Covey E, 1996, J NEUROSCI, V16, P3009