AMPK and metabolic adaptation by the heart to pressure overload

被引:45
作者
Allard, Michael F.
Parsons, Hannah L.
Saeedi, Ramesh
Wambolt, Richard B.
Brownsey, Roger
机构
[1] Univ British Columbia, St Pauls Hosp, James Hogg iCAPTURE Ctr Cardiovasc & Pulm Res, Dept Pathol & Lab Med, Vancouver, BC V6Z 1Y6, Canada
[2] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC V6Z 1Y6, Canada
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2007年 / 292卷 / 01期
关键词
adenosine 5 '-monophosphate-activated protein kinase; energy metabolism; cardiac function;
D O I
10.1152/ajpheart.00424.2006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Accelerated glycolysis in hypertrophied hearts may be a compensatory response to reduced energy production from long-chain fatty acid oxidation with 5'-AMP-activated protein kinase (AMPK) functioning as a cellular signal. Therefore, we tested the hypothesis that enhanced fatty acid oxidation improves energy status and normalizes AMPK activity and glycolysis in hypertrophied hearts. Glycolysis, fatty acid oxidation, AMPK activity, and energy status were measured in isolated working hypertrophied and control hearts from aortic-constricted and sham-operated male Sprague-Dawley rats. Hearts from halothane (3 - 4%)-anesthetized rats were perfused with KH solution containing either palmitate, a long-chain fatty acid, or palmitate plus octanoate, a medium-chain fatty acid whose oxidation is not impaired in hypertrophied hearts. Compared with control, fatty acid oxidation was lower in hypertrophied hearts perfused with palmitate, whereas it increased to similar values in both groups with octanoate plus palmitate. Glycolysis was accelerated in palmitate-perfused hypertrophied hearts and was normalized in hypertrophied hearts by the addition of octanoate. AMPK activity was increased three- to sixfold with palmitate alone and was reduced to control values by octanoate plus palmitate. Myocardial energy status improved with the addition of octanoate but did not differ between groups. Our findings, particularly the correspondence between glycolysis and AMPK activity, provide support for the view that activation of AMPK is responsible, in part, for the acceleration of glycolysis in cardiac hypertrophy. Additionally, they indicate myocardial AMPK is activated by energy state-independent mechanisms in response to pressure overload, demonstrating AMPK is more than a sensor of the heart's energy status.
引用
收藏
页码:H140 / H148
页数:9
相关论文
共 53 条
[1]   The subcellular localization of acetyl-CoA carboxylase 2 [J].
Abu-Elheiga, L ;
Brinkley, WR ;
Zhong, L ;
Chirala, SS ;
Woldegiorgis, G ;
Wakil, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1444-1449
[2]  
Allard MF, 1997, CIRCULATION, V96, P676
[3]   Hypertrophied rat hearts are less responsive to the metabolic and functional effects of insulin [J].
Allard, MF ;
Wambolt, RB ;
Longnus, SL ;
Grist, M ;
Lydell, CP ;
Parsons, HL ;
Rodrigues, B ;
Hall, JL ;
Stanley, WC ;
Bondy, GP .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 279 (03) :E487-E493
[4]   CONTRIBUTION OF OXIDATIVE-METABOLISM AND GLYCOLYSIS TO ATP PRODUCTION IN HYPERTROPHIED HEARTS [J].
ALLARD, MF ;
SCHONEKESS, BO ;
HENNING, SL ;
ENGLISH, DR ;
LOPASCHUK, GD .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (02) :H742-H750
[5]   SOME ECMR PROPERTIES IN RELATION TO OTHER SIGNALS FROM THE AUDITORY PERIPHERY [J].
ANDERSON, SD .
HEARING RESEARCH, 1980, 2 (3-4) :273-296
[6]   INCREASED GLYCOLYTIC METABOLISM IN CARDIAC HYPERTROPHY AND CONGESTIVE FAILURE [J].
BISHOP, SP ;
ALTSCHULD, RA .
AMERICAN JOURNAL OF PHYSIOLOGY, 1970, 218 (01) :153-+
[7]   Regulation of acetyl-CoA carboxylase [J].
Brownsey, RW ;
Boone, AN ;
Elliott, JE ;
Kulpa, JE ;
Lee, WM .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 :223-227
[8]   ENZYMATIC DETERMINATION OF TRIGLYCERIDE, FREE-CHOLESTEROL, AND TOTAL CHOLESTEROL IN TISSUE LIPID EXTRACTS [J].
CARR, TP ;
ANDRESEN, CJ ;
RUDEL, LL .
CLINICAL BIOCHEMISTRY, 1993, 26 (01) :39-42
[9]   Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids [J].
Clark, H ;
Carling, D ;
Saggerson, D .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2004, 271 (11) :2215-2224
[10]   EPINEPHRINE INCREASES ATP PRODUCTION IN HEARTS BY PREFERENTIALLY INCREASING GLUCOSE-METABOLISM [J].
COLLINSNAKAI, RL ;
NOSEWORTHY, D ;
LOPASCHUK, GD .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1994, 267 (05) :H1862-H1871