A decision based one-against-one method for multi-class support vector machine

被引:134
作者
Debnath, R [1 ]
Takahide, N [1 ]
Takahashi, H [1 ]
机构
[1] Univ Electrocommun, Dept Informat & Commun Engn, Chofu, Tokyo 1828585, Japan
关键词
direct acyclic graph support vector machine (DAGSVM); one-against-all; one-against-one; support vector machine (SVM);
D O I
10.1007/s10044-004-0213-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The support vector machine (SVM) has a high generalisation ability to solve binary classification problems, but its extension to multi-class problems is still an ongoing research issue. Among the existing multi-class SVM methods, the one-against-one method is one of the most suitable methods for practical use. This paper presents a new multi-class SVM method that can reduce the number of hyperplanes of the one-against-one method and thus it returns fewer support vectors. The proposed algorithm works as follows. While producing the boundary of a class, no more hyperplanes are constructed if the discriminating hyperplanes of neighbouring classes happen to separate the rest of the classes. We present a large number of experiments that show that the training time of the proposed method is the least among the existing multi-class SVM methods. The experimental results also show that the testing time of the proposed method is less than that of the one-against-one method because of the reduction of hyperplanes and support vectors. The proposed method can resolve unclassifiable regions and alleviate the over-fitting problem in a much better way than the one-against-one method by reducing the number of hyperplanes. We also present a direct acyclic graph SVM (DAGSVM) based testing methodology that improves the testing time of the DAGSVM method.
引用
收藏
页码:164 / 175
页数:12
相关论文
共 16 条
  • [11] Platt JC, 1999, ADVANCES IN KERNEL METHODS, P185
  • [12] Platt JC, 2000, ADV NEUR IN, V12, P547
  • [13] Shawe-Taylor J, 1998, ADV NEUR IN, V10, P336
  • [14] Fuzzy least squares support vector machines for multiclass problems
    Tsujinishi, D
    Abe, S
    [J]. NEURAL NETWORKS, 2003, 16 (5-6) : 785 - 792
  • [15] Vapnik V., 1998, STAT LEARNING THEORY, V1, P2
  • [16] Weston J., 1998, Technical Report CSD-TR-98-04