Spherical harmonic expansion of short-range screened Coulomb interactions

被引:15
作者
Angyan, Janos G.
Gerber, Iann
Marsman, Martijn
机构
[1] Univ Henri Poincare, CNRS, UMR 7036, Lab Cristallog & Modelisat Mat Mineraux & Biol, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Vienna, Inst Mat Phys, A-1090 Vienna, Austria
[3] Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 27期
关键词
D O I
10.1088/0305-4470/39/27/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slatertype atomic orbitals.
引用
收藏
页码:8613 / 8630
页数:18
相关论文
共 45 条
[41]   Ewald summation techniques in perspective: A survey [J].
Toukmaji, AY ;
Board, JA .
COMPUTER PHYSICS COMMUNICATIONS, 1996, 95 (2-3) :73-92
[42]   Long-range-short-range separation of the electron-electron interaction in density-functional theory [J].
Toulouse, J ;
Colonna, F ;
Savin, A .
PHYSICAL REVIEW A, 2004, 70 (06) :062505-1
[43]   Assessment of a long-range corrected hybrid functional [J].
Vydrov, Oleg A. ;
Scuseria, Gustavo E. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (23)
[44]  
WATSON GN, 1944, TREATISE THEORY BESS, P366
[45]  
Wolfram S., 2005, MATH SYSTEM DOING MA