Change in bacterial community structure during in situ Biostimulation of subsurface sediment cocontaminated with uranium and nitrate

被引:228
作者
North, NN
Dollhopf, SL
Petrie, L
Istok, JD
Balkwill, DL
Kostka, JE [1 ]
机构
[1] Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA
[2] Florida State Univ, Coll Med, Dept Biomed Sci, Tallahassee, FL 32306 USA
[3] Oregon State Univ, Dept Civil Engn, Corvallis, OR USA
关键词
D O I
10.1128/aem.70.8.4911-4920.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensively reduced and electron donors (glucose, ethanol) were consumed. Examination of sediment chemistry in cores sampled immediately adjacent to treated wells 3.5 months after treatment revealed that sediment pH increased substantially (by I to 2 pH units) while nitrate was largely depleted. A large diversity of 16S rRNA gene sequences were retrieved from subsurface sediments, including species from the alpha, beta, delta, and gamma subdivisions of the class Proteobacteria, as well as low- and high-G+C gram-positive species. Following in situ biostimulation of microbial communities within contaminated sediments, sequences related to previously cultured metal-inducing delta-Proteobacteria increased from 5% to nearly 40% of the clone libraries. Quantitative PCR revealed that Geobacter-type 16S rRNA gene sequences increased in biostimulated sediments by 1 to 2 orders of magnitude at two of the four sites tested. Evidence from the quantitative PCR analysis corroborated information obtained from 16S rRNA gene clone libraries, indicating that members of the delta-Proteobacteria subdivision, including Anaeromyxobacter dehalogenans-related and Geobacter-related sequences, are important metal-reducing organisms in acidic subsurface sediments. This study provides the first cultivation-independent analysis of the change in metal-reducing microbial communities in subsurface sediments during an in situ bioremediation experiment.
引用
收藏
页码:4911 / 4920
页数:10
相关论文
共 58 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer [J].
Anderson, RT ;
Vrionis, HA ;
Ortiz-Bernad, I ;
Resch, CT ;
Long, PE ;
Dayvault, R ;
Karp, K ;
Marutzky, S ;
Metzler, DR ;
Peacock, A ;
White, DC ;
Lowe, M ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :5884-5891
[3]   NANOGRAM NITRITE AND NITRATE DETERMINATION IN ENVIRONMENTAL AND BIOLOGICAL-MATERIALS BY VANADIUM(III) REDUCTION WITH CHEMI-LUMINESCENCE DETECTION [J].
BRAMAN, RS ;
HENDRIX, SA .
ANALYTICAL CHEMISTRY, 1989, 61 (24) :2715-2718
[4]   DIRECT DETECTION OF TRACE LEVELS OF URANIUM BY LASER-INDUCED KINETIC PHOSPHORIMETRY [J].
BRINA, R ;
MILLER, AG .
ANALYTICAL CHEMISTRY, 1992, 64 (13) :1413-1418
[5]   Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site [J].
Chang, YJ ;
Peacock, AD ;
Long, PE ;
Stephen, JR ;
McKinley, JP ;
Macnaughton, SJ ;
Hussain, AKMA ;
Saxton, AM ;
White, DC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :3149-3160
[6]   The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy [J].
Cole, JR ;
Chai, B ;
Marsh, TL ;
Farris, RJ ;
Wang, Q ;
Kulam, SA ;
Chandra, S ;
McGarrell, DM ;
Schmidt, TM ;
Garrity, GM ;
Tiedje, JM .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :442-443
[7]  
Daniels Lacy, 1994, P512
[8]   EFFECTS OF NITRATE AND NITRITE ON DISSIMILATORY IRON REDUCTION BY SHEWANELLA-PUTREFACIENS-200 [J].
DICHRISTINA, TJ .
JOURNAL OF BACTERIOLOGY, 1992, 174 (06) :1891-1896
[9]   The impact of fermentative organisms on carbon flow in methanogenic systems under constant low-substrate conditions [J].
Dollhopf, SL ;
Hashsham, SA ;
Dazzo, FB ;
Hickey, RF ;
Criddle, CS ;
Tiedje, JM .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2001, 56 (3-4) :531-538
[10]  
Fernández A, 1999, APPL ENVIRON MICROB, V65, P3697