Technical photosynthesis involving CO2 electrolysis and fermentation

被引:482
作者
Haas, Thomas [1 ]
Krause, Ralf [2 ]
Weber, Rainer [3 ]
Demler, Martin [1 ]
Schmid, Guenter [2 ]
机构
[1] Evonik Creavis GmbH, Marl, Germany
[2] Siemens AG, Erlangen, Germany
[3] Covestro AG, Leverkusen, Germany
来源
NATURE CATALYSIS | 2018年 / 1卷 / 01期
关键词
CLOSTRIDIUM-AUTOETHANOGENUM; ELECTROCATALYTIC REDUCTION; ARTIFICIAL PHOTOSYNTHESIS; BIOCATALYTIC REDUCTION; ENERGY-CONSERVATION; CONVERSION; COMPLEX; SYNGAS; SYSTEM; EFFICIENCIES;
D O I
10.1038/s41929-017-0005-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-powered electrochemical reduction of CO2 and H2O to syngas, followed by fermentation, could lead to sustainable production of useful chemicals. However, due to insufficient electric current densities and instabilities of current CO2-to-CO electrolysers, a practical, scalable artificial photosynthesis remains a major challenge. Here, we address these problems using a commercially available silver-based gas diffusion electrode (used in industrial-scale chlorine-alkaline electrolysis) as the cathode in the CO2 electrolyser. Electric current densities up to 300 mA cm(-2) were demonstrated for more than 1,200 hours with continuous operation. This CO2 electrolyser was coupled to a fermentation module, where the out-coming syngas from the CO2 electrolyser was converted to butanol and hexanol with high carbon selectivity. Conversion of photovoltaic electricity, CO2 and H2O to the desired alcohols achieved close to 100% Faradaic efficiency. Industrial production of useful and high-value chemicals via artificial photosynthesis is closer than expected with the proposed scalable hybrid system.
引用
收藏
页码:32 / 39
页数:8
相关论文
共 60 条
[1]   Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals [J].
Angenent, Largus T. ;
Richter, Hanno ;
Buckel, Wolfgang ;
Spirito, Catherine M. ;
Steinbusch, Kirsten J. J. ;
Plugge, Caroline M. ;
Strik, David P. B. T. B. ;
Grootscholten, Tim I. M. ;
Buisman, Cees J. N. ;
Hamelers, Hubertus V. M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (06) :2796-2810
[2]  
[Anonymous], 2016, REPORTS MARKETS GLOB
[3]   Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water [J].
Aoi, Shoko ;
Mase, Kentaro ;
Ohkubo, Kei ;
Fukuzumi, Shunichi .
CHEMICAL COMMUNICATIONS, 2015, 51 (50) :10226-10228
[4]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[5]  
Bell S., 2014, BIOBASED SUCCINIC AC
[6]   Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria [J].
Bertsch, Johannes ;
Mueller, Volker .
BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
[7]  
Bohlmann G. M., 2008, 264 SRL CONS
[8]  
Bohlmann G. M., 2006, 149A SRI CONS
[9]   Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation [J].
Choi, JI ;
Lee, SY .
BIOPROCESS ENGINEERING, 1997, 17 (06) :335-342
[10]   Industrial biomanufacturing: The future of chemical production [J].
Clomburg, James M. ;
Crumbley, Anna M. ;
Gonzalez, Ramon .
SCIENCE, 2017, 355 (6320)