Technical photosynthesis involving CO2 electrolysis and fermentation

被引:482
作者
Haas, Thomas [1 ]
Krause, Ralf [2 ]
Weber, Rainer [3 ]
Demler, Martin [1 ]
Schmid, Guenter [2 ]
机构
[1] Evonik Creavis GmbH, Marl, Germany
[2] Siemens AG, Erlangen, Germany
[3] Covestro AG, Leverkusen, Germany
来源
NATURE CATALYSIS | 2018年 / 1卷 / 01期
关键词
CLOSTRIDIUM-AUTOETHANOGENUM; ELECTROCATALYTIC REDUCTION; ARTIFICIAL PHOTOSYNTHESIS; BIOCATALYTIC REDUCTION; ENERGY-CONSERVATION; CONVERSION; COMPLEX; SYNGAS; SYSTEM; EFFICIENCIES;
D O I
10.1038/s41929-017-0005-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-powered electrochemical reduction of CO2 and H2O to syngas, followed by fermentation, could lead to sustainable production of useful chemicals. However, due to insufficient electric current densities and instabilities of current CO2-to-CO electrolysers, a practical, scalable artificial photosynthesis remains a major challenge. Here, we address these problems using a commercially available silver-based gas diffusion electrode (used in industrial-scale chlorine-alkaline electrolysis) as the cathode in the CO2 electrolyser. Electric current densities up to 300 mA cm(-2) were demonstrated for more than 1,200 hours with continuous operation. This CO2 electrolyser was coupled to a fermentation module, where the out-coming syngas from the CO2 electrolyser was converted to butanol and hexanol with high carbon selectivity. Conversion of photovoltaic electricity, CO2 and H2O to the desired alcohols achieved close to 100% Faradaic efficiency. Industrial production of useful and high-value chemicals via artificial photosynthesis is closer than expected with the proposed scalable hybrid system.
引用
收藏
页码:32 / 39
页数:8
相关论文
共 60 条
[51]   ENERGY POLICY Cost of carbon capture drops, but does anyone want it? [J].
Service, Robert F. .
SCIENCE, 2016, 354 (6318) :1362-1363
[52]   ENERGY METABOLISM OF CLOSTRIDIUM KLUYVERI [J].
THAUER, RK ;
JUNGERMANN, K ;
HENNINGER, H ;
WENNING, J ;
DECKER, K .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1968, 4 (02) :173-+
[53]   ENERGY-CONSERVATION IN CHEMOTROPIC ANAEROBIC BACTERIA [J].
THAUER, RK ;
JUNGERMANN, K ;
DECKER, K .
BACTERIOLOGICAL REVIEWS, 1977, 41 (01) :100-180
[54]   Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system [J].
Torella, Joseph P. ;
Gagliardi, Christopher J. ;
Chen, Janice S. ;
Bediako, D. Kwabena ;
Colon, Brendan ;
Way, Jeffery C. ;
Silver, Pamela A. ;
Nocera, Daniel G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (08) :2337-2342
[55]  
Turek T., 2016, Patent No. [US 9.243,337 B2, 9243337]
[56]   The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes [J].
Verma, Sumit ;
Lu, Xun ;
Ma, Sichao ;
Masel, Richard I. ;
Kenis, Paul J. A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (10) :7075-7084
[57]   Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves [J].
von der Assen, Niklas ;
Mueller, Leonard J. ;
Steingrube, Annette ;
Voll, Philip ;
Bardow, Andre .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (03) :1093-1101
[58]   NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO [J].
Wang, Shuning ;
Huang, Haiyan ;
Kahnt, Joerg ;
Mueller, Alexander P. ;
Koepke, Michael ;
Thauer, Rudolf K. .
JOURNAL OF BACTERIOLOGY, 2013, 195 (19) :4373-4386
[59]   Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms [J].
Woo, Han Min .
CURRENT OPINION IN BIOTECHNOLOGY, 2017, 45 :1-7
[60]   An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory [J].
Xu, Gang ;
Liang, Feifei ;
Yang, Yongping ;
Hu, Yue ;
Zhang, Kai ;
Liu, Wenyi .
ENERGIES, 2014, 7 (05) :3484-3502