The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes

被引:418
作者
Verma, Sumit [1 ,2 ]
Lu, Xun [1 ]
Ma, Sichao [2 ,3 ]
Masel, Richard I. [4 ]
Kenis, Paul J. A. [1 ,2 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, 600 South Mathews Ave, Urbana, IL 61801 USA
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[3] Univ Illinois, Dept Chem, 505 South Mathews Ave, Urbana, IL 61801 USA
[4] Dioxide Mat, 3998 FAU Blvd 300, Boca Raton, FL 33431 USA
关键词
CARBON-DIOXIDE REDUCTION; ELECTROCHEMICAL REDUCTION; IONIC LIQUIDS; ELECTROCATALYTIC REDUCTION; SELECTIVE CONVERSION; MERCURY-ELECTRODE; ENHANCED ACTIVITY; METAL-ELECTRODES; OXYGEN REDUCTION; CATALYSTS;
D O I
10.1039/c5cp05665a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electroreduction of CO2 to C-1-C-2 chemicals can be a potential strategy for utilizing CO2 as a carbon feedstock. In this work, we investigate the effect of electrolytes on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Electrolyte concentration was found to play a major role in the process for the electrolytes (KOH, KCl, and KHCO3) studied here. Several fold improvements in partial current densities of CO (j(CO)) were observed on moving from 0.5 M to 3.0 M electrolyte solution independent of the nature of the anion. j(CO) values as high as 440 mA cm(-2) with an energy efficiency (EE) of approximate to 42% and 230 mA cm(-2) with EE approximate to 54% were observed when using 3.0 M KOH. Electrochemical impedance spectroscopy showed that both the charge transfer resistance (R-ct) and the cell resistance (R-cell) decreased on moving from a 0.5 M to a 3.0 M KOH electrolyte. Anions were found to play an important role with respect to reducing the onset potential of CO in the order OH- (-0.13 V vs. RHE) < HCO3- (-0.46 V vs. RHE) < Cl- (-0.60 V vs. RHE). A decrease in R-ct upon increasing electrolyte concentration and the effect of anions on the cathode can be explained by an interplay of different interactions in the electrical double layer that can either stabilize or destabilize the rate limiting CO2 center dot- radical. EMIM based ionic liquids and 1 : 2 choline Cl urea based deep eutectic solvents (DESs) have been used for CO2 capture but exhibit low conductivity. Here, we investigate if the addition of KCl to such solutions can improve conductivity and hence j(CO). Electrolytes containing KCl in combination with EMIM Cl, choline Cl, or DESs showed a two to three fold improvement in j(CO) in comparison to those without KCl. Using such mixtures can be a strategy for integrating the process of CO2 capture with CO2 conversion.
引用
收藏
页码:7075 / 7084
页数:10
相关论文
共 66 条
[1]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[2]   Robust carbon dioxide reduction on molybdenum disulphide edges [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Behranginia, Amirhossein ;
Rosen, Brian A. ;
Baskin, Artem ;
Repnin, Nikita ;
Pisasale, Davide ;
Phillips, Patrick ;
Zhu, Wei ;
Haasch, Richard ;
Klie, Robert F. ;
Kral, Petr ;
Abiade, Jeremiah ;
Salehi-Khojin, Amin .
NATURE COMMUNICATIONS, 2014, 5
[3]   Green processing using ionic liquids and CO2 [J].
Blanchard, LA ;
Hancu, D ;
Beckman, EJ ;
Brennecke, JF .
NATURE, 1999, 399 (6731) :28-29
[5]   Towards Solar Fuels from Water and CO2 [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CHEMSUSCHEM, 2010, 3 (02) :195-208
[6]   INSITU SPECTROSCOPIC INVESTIGATION OF ADSORBED INTERMEDIATE RADICALS IN ELECTROCHEMICAL REACTIONS - CO2- ON PLATINUM [J].
CHANDRASEKARAN, K ;
BOCKRIS, JO .
SURFACE SCIENCE, 1987, 185 (03) :495-514
[7]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[8]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[9]   Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights [J].
Cole, Emily Barton ;
Lakkaraju, Prasad S. ;
Rampulla, David M. ;
Morris, Amanda J. ;
Abelev, Esta ;
Bocarsly, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (33) :11539-11551
[10]   Selective Conversion of CO2 to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst [J].
DiMeglio, John L. ;
Rosenthal, Joel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (24) :8798-8801