A system-level model for the microbial regulatory genome

被引:50
作者
Brooks, Aaron N. [1 ,2 ]
Reiss, David J. [1 ]
Allard, Antoine [3 ]
Wu, Wei-Ju [1 ]
Salvanha, Diego M. [1 ,4 ]
Plaisier, Christopher L. [1 ]
Chandrasekaran, Sriram [1 ]
Pan, Min [1 ]
Kaur, Amardeep [1 ]
Baliga, Nitin S. [1 ,2 ,5 ,6 ,7 ]
机构
[1] Inst Syst Biol, Seattle, WA 98109 USA
[2] Univ Washington, Mol & Cellular Biol Program, Seattle, WA 98195 USA
[3] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ, Canada
[4] Univ Sao Paulo, Dept Comp & Math FFCLRP USP, LabPIB, BR-14049 Ribeirao Preto, Brazil
[5] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
[6] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[7] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 巴西圣保罗研究基金会; 美国国家卫生研究院;
关键词
EGRIN; gene regulatory networks; systems biology; transcriptional regulation; ESCHERICHIA-COLI K-12; TRANSCRIPTIONAL REGULATION; DIPEPTIDE PERMEASE; TRANSPORT-SYSTEMS; NETWORK INFERENCE; GENE-EXPRESSION; PROMOTERS; REGULONDB; REGION; SITES;
D O I
10.15252/msb.20145160
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes.
引用
收藏
页数:14
相关论文
共 37 条
[31]   Indirect and suboptimal control of gene expression is widespread in bacteria [J].
Price, Morgan N. ;
Deutschbauer, Adam M. ;
Skerker, Jeffrey M. ;
Wetmore, Kelly M. ;
Ruths, Troy ;
Mar, Jordan S. ;
Kuehl, Jennifer V. ;
Shao, Wenjun ;
Arkin, Adam P. .
MOLECULAR SYSTEMS BIOLOGY, 2013, 9
[32]   Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks [J].
Reiss, David J. ;
Baliga, Nitin S. ;
Bonneau, Richard .
BMC BIOINFORMATICS, 2006, 7 (1)
[33]  
Salgado H, 2012, METHODS MOL BIOL, V804, P179, DOI 10.1007/978-1-61779-361-5_10
[34]   Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data [J].
Segal, E ;
Shapira, M ;
Regev, A ;
Pe'er, D ;
Botstein, D ;
Koller, D ;
Friedman, N .
NATURE GENETICS, 2003, 34 (02) :166-176
[35]   Extracting the multiscale backbone of complex weighted networks [J].
Serrano, M. Angeles ;
Boguna, Marian ;
Vespignani, Alessandro .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (16) :6483-6488
[36]   Graph clustering via a discrete uncoupling process [J].
Van Dongen, Stijn .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) :121-141
[37]   An evolutionarily conserved RNase-based mechanism for repression of transcriptional positive autoregulation [J].
Wurtmann, Elisabeth J. ;
Ratushny, Alexander V. ;
Pan, Min ;
Beer, Karlyn D. ;
Aitchison, John D. ;
Baliga, Nitin S. .
MOLECULAR MICROBIOLOGY, 2014, 92 (02) :369-382