Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum:: identification of novel effector proteins translocated to plant host cells through the type III secretion system

被引:194
作者
Cunnac, S [1 ]
Occhialini, A [1 ]
Barberis, P [1 ]
Boucher, C [1 ]
Genin, S [1 ]
机构
[1] INRA, CNRS, UMR 2594, Lab Interact Plantes Microorganismes, F-31326 Castanet Tolosan, France
关键词
D O I
10.1111/j.1365-2958.2004.04118.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability of Ralstonia solanacearum strain GMI1000 to cause disease on a wide range of host plants (including most Solanaceae and Arabidopsis thaliana) depends on genes activated by the regulatory gene hrpB. HrpB controls the expression of the type III secretion system (TTSS) and pathogenicity effectors transiting through this pathway. In order to establish the complete repertoire of TTSS-dependent effectors belonging to the Hrp regulon and to start their functional analysis, we developed a rapid method for insertional mutagenesis, which was used to monitor the expression of 71 candidate genes and disrupt 56 of them. This analysis yielded a total of 48 novel hrpB-regulated genes. Using the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter fusion system, we provide direct biochemical evidence that five R. solanacearum effector proteins are translocated into plant host cells through the TTSS. Among these novel TTSS effectors, RipA and RipG both belong to multigenic families, RipG defining a novel class of leucine-rich-repeats harbouring proteins. The members of these multigenic families are differentially regulated, being composed of genes expressed in either an hrpB-dependent or an hrpB-independent manner. Pathogenicity assays of the 56 mutant strains on two host plants indicate that, with two exceptions, mutations in individual effectors have no effect on virulence, a probable consequence of genetic and functional redundancy. This large repertoire of HrpB-regulated genes, which comprises > 20 probable TTSS effector genes with no counterparts in other bacterial species, represents an important step towards a full-genome understanding of R. solanacearum virulence.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 56 条
[1]   Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J].
Abramovitch, RB ;
Kim, YJ ;
Chen, SR ;
Dickman, MB ;
Martin, GB .
EMBO JOURNAL, 2003, 22 (01) :60-69
[2]   A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes [J].
Aldon, D ;
Brito, B ;
Boucher, C ;
Genin, S .
EMBO JOURNAL, 2000, 19 (10) :2304-2314
[3]   POPA1, A PROTEIN WHICH INDUCES A HYPERSENSITIVITY-LIKE RESPONSE ON SPECIFIC PETUNIA GENOTYPES, IS SECRETED VIA THE HRP PATHWAY OF PSEUDOMONAS-SOLANACEARUM [J].
ARLAT, M ;
VANGIJSEGEM, F ;
HUET, JC ;
PERNOLLET, JC ;
BOUCHER, CA .
EMBO JOURNAL, 1994, 13 (03) :543-553
[4]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[5]   Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner [J].
Badel, JL ;
Nomura, K ;
Bandyopadhyay, S ;
Shimizu, R ;
Collmer, A ;
He, SY .
MOLECULAR MICROBIOLOGY, 2003, 49 (05) :1239-1251
[6]   Antibiotic resistance gene cassettes derived from the Omega interposon for use in E-coli and Streptomyces [J].
BlondeletRouault, MH ;
Weiser, J ;
Lebrihi, A ;
Branny, P ;
Pernodet, JL .
GENE, 1997, 190 (02) :315-317
[7]   prhJ and hrpG, two new components of the plant signal-dependent regulatory cascade controlled by PrhA in Ralstonia solanacearum [J].
Brito, B ;
Marenda, M ;
Barberis, P ;
Boucher, C ;
Genin, S .
MOLECULAR MICROBIOLOGY, 1999, 31 (01) :237-251
[8]   The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri [J].
Buchrieser, C ;
Glaser, P ;
Rusniok, C ;
Nedjari, H ;
d'Hauteville, H ;
Kunst, F ;
Sansonetti, P ;
Parsot, C .
MOLECULAR MICROBIOLOGY, 2000, 38 (04) :760-771
[9]   Getting across -: bacterial type III effector proteins on their way to the plant cell [J].
Büttner, D ;
Bonas, U .
EMBO JOURNAL, 2002, 21 (20) :5313-5322
[10]   Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria [J].
Büttner, D ;
Nennstiel, D ;
Klüsener, B ;
Bonas, U .
JOURNAL OF BACTERIOLOGY, 2002, 184 (09) :2389-+