The replication-related organization of bacterial genomes

被引:206
作者
Rocha, EPC
机构
[1] Univ Paris 06, F-75005 Paris, France
[2] Inst Pasteur, Unite Genet Genomes Bacteriens, F-75724 Paris, France
来源
MICROBIOLOGY-SGM | 2004年 / 150卷
关键词
D O I
10.1099/mic.0.26974-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The replication of the chromosome is among the most essential functions of the bacterial cell and influences many other cellular mechanisms, from gene expression to cell division. Yet the way it impacts on the bacterial chromosome was not fully acknowledged until the availability of complete genomes allowed one to look upon genomes as more than bags of genes. Chromosomal replication includes a set of asymmetric mechanisms, among which are a division in a lagging and a leading strand and a gradient between early and late replicating regions. These differences are the causes of many of the organizational features observed in bacterial genomes, in terms of both gene distribution and sequence composition along the chromosome. When asymmetries or gradients increase in some genomes, e.g. due to a different composition of the DNA polymerase or to a higher growth rate, so do the corresponding biases. As some of the features of the chromosome structure seem to be under strong selection, understanding such biases is important for the understanding of chromosome organization and adaptation. Inversely, understanding chromosome organization may shed further light on questions relating to replication and cell division. Ultimately, the understanding of the interplay between these different elements will allow a better understanding of bacterial genetics and evolution.
引用
收藏
页码:1609 / 1627
页数:19
相关论文
共 171 条
[1]  
Achaz G, 2003, GENETICS, V164, P1279
[2]   Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia [J].
Akman, L ;
Yamashita, A ;
Watanabe, H ;
Oshima, K ;
Shiba, T ;
Hattori, M ;
Aksoy, S .
NATURE GENETICS, 2002, 32 (03) :402-407
[3]   STUDIES ON DNA-REPLICATION IN THE BACTERIOPHAGE-T4 INVITRO SYSTEM [J].
ALBERTS, BM ;
BARRY, J ;
BEDINGER, P ;
FORMOSA, T ;
JONGENEEL, CV ;
KREUZER, KN .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1982, 47 :655-668
[4]   CODON PREFERENCES IN FREE-LIVING MICROORGANISMS [J].
ANDERSSON, SGE ;
KURLAND, CG .
MICROBIOLOGICAL REVIEWS, 1990, 54 (02) :198-210
[5]   RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro [J].
Artsimovitch, I ;
Svetlov, V ;
Anthony, L ;
Burgess, RR ;
Landick, R .
JOURNAL OF BACTERIOLOGY, 2000, 182 (21) :6027-6035
[6]   Correlation of Chi orientation with transcription indicates a fundamental relationship between recombination and transcription [J].
Bell, SJ ;
Chow, YC ;
Ho, JYK ;
Forsdyke, DR .
GENE, 1998, 216 (02) :285-292
[7]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[8]   Distribution of chromosome length variation in natural isolates of Escherichia coli [J].
Bergthorsson, U ;
Ochman, H .
MOLECULAR BIOLOGY AND EVOLUTION, 1998, 15 (01) :6-16
[9]   Codon usage can explain CT-rich islands surrounding Chi sites on the Escherichia coli genome [J].
Biaudet, V ;
El Karoui, M ;
Gruss, A .
MOLECULAR MICROBIOLOGY, 1998, 29 (02) :666-669
[10]   2 RELATED RECOMBINASES ARE REQUIRED FOR SITE-SPECIFIC RECOMBINATION AT DIF AND CER IN ESCHERICHIA-COLI K12 [J].
BLAKELY, G ;
MAY, G ;
MCCULLOCH, R ;
ARCISZEWSKA, LK ;
BURKE, M ;
LOVETT, ST ;
SHERRATT, DJ .
CELL, 1993, 75 (02) :351-361