Stretched exponential relaxation for growing interfaces in quenched disordered media -: art. no. 031403

被引:3
作者
Díaz-Sánchez, A
Pérez-Garrido, A
Urbina, A
Catalá, JD
机构
[1] Univ Politecn Cartagena, Dept Fis Aplicada, E-30202 Murcia, Spain
[2] Univ Politecn Cartagena, Dept Elect Tecnol Computadoras & Proyectos, E-30202 Murcia, Spain
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 03期
关键词
D O I
10.1103/PhysRevE.66.031403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the relaxation for growing interfaces in quenched disordered media. We use a directed percolation depinning model introduced by Tang and Leschhorn for 1+1 dimensions. We define the two-time autocorrelation function of the interface height C(t('),t) and its Fourier transform. These functions depend on the difference of times t-t(') for long enough times, this is the steady-state regime. We find a two-step relaxation decay in this regime. The long time tail can be fitted by a stretched exponential relaxation function. The relaxation time tau(alpha) is proportional to the characteristic distance of the clusters of pinning cells in the direction parallel to the interface and it diverges as a power law. The two-step relaxation is lost at a given wavelength of the Fourier transform, which is proportional to the characteristic distance of the clusters of pinning cells in the direction perpendicular to the interface. The stretched exponential relaxation is caused by the existence of clusters of pinning cells and it is a direct consequence of the quenched noise.
引用
收藏
页码:1 / 031403
页数:4
相关论文
共 13 条
[1]   ANOMALOUS INTERFACE ROUGHENING IN POROUS-MEDIA - EXPERIMENT AND MODEL [J].
BULDYREV, SV ;
BARABASI, AL ;
CASERTA, F ;
HAVLIN, S ;
STANLEY, HE ;
VICSEK, T .
PHYSICAL REVIEW A, 1992, 45 (12) :R8313-R8316
[2]   Relaxation of disordered magnets in the Griffiths' regime [J].
Cesi, F ;
Maes, C ;
Martinelli, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :135-173
[3]   Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation [J].
Colaiori, F ;
Moore, MA .
PHYSICAL REVIEW E, 2001, 63 (05)
[4]   CLUSTERS AND ISING CRITICAL DROPLETS - A RENORMALIZATION GROUP-APPROACH [J].
CONIGLIO, A ;
KLEIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2775-2780
[5]   Nonexponential relaxation in fully frustrated models [J].
Fierro, A ;
deCandia, A ;
Coniglio, A .
PHYSICAL REVIEW E, 1997, 56 (05) :4990-4997
[6]   Percolation transition and the onset of nonexponential relaxation in fully frustrated models [J].
Fierro, A ;
Franzese, G ;
de Candia, A ;
Coniglio, A .
PHYSICAL REVIEW E, 1999, 59 (01) :60-66
[7]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[8]   Phase transitions in the Potts spin-glass model [J].
Franzese, G ;
Coniglio, A .
PHYSICAL REVIEW E, 1998, 58 (03) :2753-2759
[9]  
GOTZE W, 1991, LIQUIDS FREEZING GLA
[10]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892