Forensics and mitochondrial DNA: Applications, debates, and foundations

被引:174
作者
Budowle, B [1 ]
Allard, MW
Wilson, MR
Chakraborty, R
机构
[1] FBI, Lab Div, Washington, DC 20535 USA
[2] George Washington Univ, Biol Dept Biol Sci, Washington, DC 20052 USA
[3] FBI Acad, Lab Div, Quantico, VA 22135 USA
[4] Univ Cincinnati, Dept Environm Hlth, Ctr Genome Informat, Cincinnati, OH 45267 USA
关键词
heteroplasmy; nomenclature; paternal inheritance; population data; recombination;
D O I
10.1146/annurev.genom.4.070802.110352
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Debate on the validity and reliability of scientific methods often arises in the courtroom. When the government (i.e., the prosecution) is the proponent of evidence, the defense is obliged to challenge its admissibility. Regardless, those who seek to use DNA typing methodologies to analyze forensic biological evidence have a responsibility to understand the technology and its applications so a proper foundation(s) for its use can be laid. Mitochondrial DNA (mtDNA), an extranuclear genome, has certain features that make it desirable for forensics, namely, high copy number, lack of recombination, and matrilineal inheritance. mtDNA typing has become routine in forensic biology and is used to analyze old bones, teeth, hair shafts, and other biological samples where nuclear DNA content is low. To evaluate results obtained by sequencing the two hypervariable regions of the control region of the human mtDNA genome, one must consider the genetically related issues of nomenclature, reference population databases, heteroplasmy, paternal leakage, recombination, and, of course, interpretation of results. We describe the approaches, the impact some issues may have on interpretation of mtDNA analyses, and some issues raised in the courtroom.
引用
收藏
页码:119 / 141
页数:23
相关论文
共 122 条
[1]  
Allard MW, 2002, J FORENSIC SCI, V47, P1215
[2]  
ALLARD MW, 2003, UNPUB FORENSIC SCI I
[3]  
Allen M, 1998, J FORENSIC SCI, V43, P453
[4]   Results of the 1999-2000 collaborative exercise and proficiency testing program on mitochondrial DNA of the GEP-ISFG:: an inter-laboratory study of the observed variability in the heteroplasmy level of hair from the same donor [J].
Alonso, A ;
Salas, A ;
Albarrán, C ;
Arroyo, E ;
Castro, A ;
Crespillo, M ;
di Lonardo, AM ;
Lareu, MV ;
Cubría, CL ;
Soto, ML ;
Lorente, JA ;
Semper, MM ;
Palacio, A ;
Paredes, M ;
Pereira, L ;
Lezaun, AP ;
Brito, JP ;
Sala, A ;
Vide, MC ;
Whittle, M ;
Yunis, JJ ;
Gómez, J .
FORENSIC SCIENCE INTERNATIONAL, 2002, 125 (01) :1-7
[5]   The ancestry of Brazilian mtDNA lineages [J].
Alves-Silva, J ;
Santos, MD ;
Guimaraes, PEM ;
Ferreira, ACS ;
Bandelt, HJ ;
Pena, SDJ ;
Prado, VF .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (02) :444-461
[6]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[7]   Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA [J].
Andrews, RM ;
Kubacka, I ;
Chinnery, PF ;
Lightowlers, RN ;
Turnbull, DM ;
Howell, N .
NATURE GENETICS, 1999, 23 (02) :147-147
[8]  
Arctander P, 1999, SCIENCE, V284, P2090
[9]   Linkage disequilibrium and recombination in hominid mitochondrial DNA [J].
Awadalla, P ;
Eyre-Walker, A ;
Smith, JM .
SCIENCE, 1999, 286 (5449) :2524-2525
[10]  
AWADALLA P, 2000, SCIENCE, V288, pA1931