A Wnt-Axin2-GSK3β cascade regulates Snail1 activity in breast cancer cells

被引:530
作者
Yook, Jong In
Li, Xiao-Yan
Ota, Ichiro
Hu, Casey
Kim, Hyun Sil
Kim, Nam Hee
Cha, So Young
Ryu, Joo Kyung
Choi, Yoon Jung
Kim, Jin
Fearon, Eric R.
Weiss, Stephen J. [1 ]
机构
[1] Univ Michigan, Ctr Comprehens Canc, Div Med & Mol Genet, Dept Internal Med,Life Sci Inst, Ann Arbor, MI 48109 USA
[2] Yonsei Univ, Coll Dent, Oral Canc Res Inst, Dept Oral Pathol, Seoul 120752, South Korea
[3] Ilsan Hosp, Natl Hlth Insurance Corp, Dept Pathol, Kyungki 419719, South Korea
[4] Univ Michigan, Dept Internal Med Human Genet & Pathol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1038/ncb1508
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Accumulating evidence indicates that hyperactive Wnt signalling occurs in association with the development and progression of human breast cancer. As a consequence of engaging the canonical Wnt pathway, a beta-catenin-T-cell factor (TCF) transcriptional complex is generated, which has been postulated to trigger the epithelial - mesenchymal transition (EMT) that characterizes the tissue-invasive phenotype. However, the molecular mechanisms by which the beta-catenin-TCF complex induces EMT-like programmes remain undefined. Here, we demonstrate that canonical Wnt signalling engages tumour cell dedifferentiation and tissue-invasive activity through an Axin2-dependent pathway that stabilizes the Snail1 zinc-transcription factor, a key regulator of normal and neoplastic EMT programmes. Axin2 regulates EMT by acting as a nucleocytoplasmic chaperone for GSK3 beta, the dominant kinase responsible for controlling Snail1 protein turnover and activity. As dysregulated Wnt signalling marks a diverse array of cancerous tissue types, the identification of a beta-catenin-TCF-regulated Axin2 -GSK3 beta-Snail1 axis provides new mechanistic insights into cancer-associated EMT programmes.
引用
收藏
页码:1398 / U57
页数:13
相关论文
共 30 条
[1]   Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism [J].
Ayyanan, A ;
Civenni, G ;
Ciarloni, L ;
Morel, C ;
Mueller, N ;
Lefort, K ;
Mandinova, A ;
Raffoul, W ;
Fiche, M ;
Dotto, GP ;
Brisken, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3799-3804
[2]   An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells [J].
Bafico, A ;
Liu, GZ ;
Goldin, L ;
Harris, V ;
Aaronson, SA .
CANCER CELL, 2004, 6 (05) :497-506
[3]   The Snail genes as inducers of cell movement and survival: implications in development and cancer [J].
Barrallo-Gimeno, A ;
Nieto, MA .
DEVELOPMENT, 2005, 132 (14) :3151-3161
[4]   Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment [J].
Brabletz, T ;
Jung, A ;
Reu, S ;
Porzner, M ;
Hlubek, F ;
Kunz-Schughart, LA ;
Knuechel, R ;
Kirchner, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10356-10361
[5]   The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition [J].
Carver, EA ;
Jiang, RL ;
Lan, Y ;
Oram, KF ;
Gridley, T .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (23) :8184-8188
[6]   Mouse axin and Axin2/conductin proteins are functionally equivalent in vivo [J].
Chia, IV ;
Costantini, F .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (11) :4371-4376
[7]   Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis [J].
Chu, EY ;
Hens, J ;
Andl, T ;
Kairo, A ;
Yamaguchi, TP ;
Brisken, C ;
Glick, A ;
Wysolmerski, JJ ;
Millar, SE .
DEVELOPMENT, 2004, 131 (19) :4819-4829
[8]   Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of β-catenin [J].
Cong, F ;
Varmus, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2882-2887
[9]   Cadherins and catenins in breast cancer [J].
Cowin, P ;
Rowlands, TM ;
Hatsell, SJ .
CURRENT OPINION IN CELL BIOLOGY, 2005, 17 (05) :499-508
[10]   Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex [J].
Dajani, R ;
Fraser, E ;
Roe, SM ;
Yeo, M ;
Good, VM ;
Thompson, V ;
Dale, TC ;
Pearl, LH .
EMBO JOURNAL, 2003, 22 (03) :494-501