Site-specific incorporation of nucleoside analogs by HIV-1 reverse transcriptase and the template grip mutant P157S - Template interactions influence substrate recognition at the polymerase active site

被引:26
作者
Klarmann, GJ
Smith, RA
Schinazi, RF
North, TW
Preston, BD
机构
[1] Univ Utah, Dept Biochem, Eccles Inst Human Genet, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Radiat Oncol, Eccles Inst Human Genet, Salt Lake City, UT 84112 USA
[3] Univ Utah, Huntsman Canc Inst, Salt Lake City, UT 84112 USA
[4] Emory Univ, Sch Med, Dept Pediat, Decatur, GA 30033 USA
[5] Emory Univ, Sch Med, Georgia Vet Affairs Res Ctr AIDS & HIV Invect, Decatur, GA 30033 USA
[6] Univ Calif Davis, Ctr Comparat Med, Davis, CA 95616 USA
关键词
D O I
10.1074/jbc.275.1.359
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Studies of drug-resistant reverse transcriptases (RTs) reveal the roles of specific structural elements and amino acids in polymerase function. To characterize better the effects of RT/template interactions on dNTP substrate recognition, we examined the sensitivity of human immunodeficiency virus type 1 (HIV-1) RT containing a new mutation in a "template grip" residue (P157S) to the 5'-triphosphates of (-)-beta-2',3'-dideoxy-3'-thiacytidine (3TC), (-)-beta-2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC), and 3'-azido-3'-deoxythymidine (AZT). A primer extension assay was used to monitor quantitatively drug monophosphate incorporation opposite each of multiple target sites. Wild-type and P157S RTs had similar catalytic activities and processivities on heteropolymeric RNA and DNA templates. When averaged over multiple template sites, P157S RT was 2-7-fold resistant to the 5'-triphosphates of 3TC, FTC, and AZT, Each drug triphosphate inhibited polymerization more efficiently on the DNA template compared with an RNA template of identical sequence. Moreover, chain termination by 3TC and FTC was strongly influenced by template sequence context. Incorporation of FTC and 3TC monophosphate varied up to 10-fold opposite 7 different G residues in the DNA template, and the P157S mutation altered this site specificity. In summary, these data identify Pro(157) as an important residue affecting nucleoside analog resistance and suggest that interactions between RT and the template strand influence dNTP substrate recognition at the RT active site. Our findings are discussed within the context of the HIV-1 RT structure.
引用
收藏
页码:359 / 366
页数:8
相关论文
共 64 条
[1]  
ABBOTTS J, 1993, J BIOL CHEM, V268, P10312
[2]   PRODUCTION OF ACQUIRED IMMUNODEFICIENCY SYNDROME-ASSOCIATED RETROVIRUS IN HUMAN AND NONHUMAN CELLS TRANSFECTED WITH AN INFECTIOUS MOLECULAR CLONE [J].
ADACHI, A ;
GENDELMAN, HE ;
KOENIG, S ;
FOLKS, T ;
WILLEY, R ;
RABSON, A ;
MARTIN, MA .
JOURNAL OF VIROLOGY, 1986, 59 (02) :284-291
[3]   Effects of 3'-deoxynucleoside 5'-triphosphate concentrations on chain termination by nucleoside analogs during human immunodeficiency virus type 1 reverse transcription of minus-strand strong-stop DNA [J].
Arts, EJ ;
Marois, JP ;
Gu, ZX ;
LeGrice, SFJ ;
Wainberg, MA .
JOURNAL OF VIROLOGY, 1996, 70 (02) :712-720
[4]   Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme [J].
Back, NKT ;
Nijhuis, M ;
Keulen, W ;
Boucher, CAB ;
Essink, BBO ;
vanKuilenburg, ABP ;
vanGennip, AH ;
Berkhout, B .
EMBO JOURNAL, 1996, 15 (15) :4040-4049
[5]  
Bartholomeusz A., 1998, VIRAL HEPATITIS REV, V4, P167
[6]  
BEBENEK K, 1993, REVERSE TRANSCRIPTAS, P85
[7]   ANALYSIS OF MUTATIONS AT POSITION-184 IN REVERSE-TRANSCRIPTASE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 [J].
BOYER, PL ;
HUGHES, SH .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1995, 39 (07) :1624-1628
[8]   Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes [J].
Brautigam, CA ;
Steitz, TA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (01) :54-63
[9]   SENSITIVITY OF HIV-1 REVERSE-TRANSCRIPTASE AND ITS MUTANTS TO INHIBITION BY AZIDOTHYMIDINE TRIPHOSPHATE [J].
CARROLL, SS ;
GEIB, J ;
OLSEN, DB ;
STAHLHUT, M ;
SHAFER, JA ;
KUO, LC .
BIOCHEMISTRY, 1994, 33 (08) :2113-2120
[10]   Increased activity and fidelity of DNA polymerase beta on single-nucleotide gapped DNA [J].
Chagovetz, AM ;
Sweasy, JB ;
Preston, BD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27501-27504