Improving false discovery rate estimation

被引:104
作者
Pounds, S [1 ]
Cheng, C [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, Memphis, TN 38105 USA
关键词
D O I
10.1093/bioinformatics/bth160
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Recent attempts to account for multiple testing in the analysis of microarray data have focused on controlling the false discovery rate (FDR). However, rigorous control of the FDR at a preselected level is often impractical. Consequently, it has been suggested to use the q-value as an estimate of the proportion of false discoveries among a set of significant findings. However, such an interpretation of the q-value may be unwarranted considering that the q-value is based on an unstable estimator of the positive FDR (pFDR). Another method proposes estimating the FDR by modeling p-values as arising from a beta-uniform mixture (BUM) distribution. Unfortunately, the BUM approach is reliable only in settings where the assumed model accurately represents the actual distribution of p-values. Methods: A method called the spacings LOESS histogram (SPLOSH) is proposed for estimating the conditional FDR (cFDR), the expected proportion of false positives conditioned on having k 'significant' findings. SPLOSH is designed to be more stable than the q-value and applicable in a wider variety of settings than BUM. Results: In a simulation study and data analysis example, SPLOSH exhibits the desired characteristics relative to the q-value and BUM.
引用
收藏
页码:1737 / 1745
页数:9
相关论文
共 28 条
[1]   A mixture model approach for the analysis of microarray gene expression data [J].
Allison, DB ;
Gadbury, GL ;
Heo, MS ;
Fernández, JR ;
Lee, CK ;
Prolla, TA ;
Weindruch, R .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) :1-20
[2]  
[Anonymous], 1993, Visualizing Data
[3]  
ANTON H, 1992, CALCULUS
[4]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[5]   On the adaptive control of the false discovery fate in multiple testing with independent statistics [J].
Benjamini, Y ;
Hochberg, Y .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2000, 25 (01) :60-83
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]  
Casella G., 2021, STAT INFERENCE
[8]   LOCALLY WEIGHTED REGRESSION - AN APPROACH TO REGRESSION-ANALYSIS BY LOCAL FITTING [J].
CLEVELAND, WS ;
DEVLIN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :596-610
[9]   Multiple hypothesis testing in microarray experiments [J].
Dudoit, S ;
Shaffer, JP ;
Boldrick, JC .
STATISTICAL SCIENCE, 2003, 18 (01) :71-103
[10]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160