LASSO vector autoregression structures for very short-term wind power forecasting

被引:85
作者
Cavalcante, Laura [1 ]
Bessa, Ricardo J. [1 ]
Reis, Marisa [1 ]
Browell, Jethro [2 ]
机构
[1] INESC Technol & Sci INESC TEC, Campus FEUP,Rua Dr Roberto Frias, P-4200465 Oporto, Portugal
[2] Univ Strathclyde, Royal Coll Bldg,204 George St, Glasgow, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
wind power; vector autoregression; scalability; sparse; renewable energy; parallel computing; SPATIOTEMPORAL ANALYSIS; ENERGY; UNCERTAINTY; SYSTEMS; SELECTION; IMPACT;
D O I
10.1002/we.2029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The deployment of smart grids and renewable energy dispatch centers motivates the development of forecasting techniques that take advantage of near real-time measurements collected from geographically distributed sensors. This paper describes a forecasting methodology that explores a set of different sparse structures for the vector autoregression (VAR) model using the least absolute shrinkage and selection operator (LASSO) framework. The alternating direction method of multipliers is applied to fit the different LASSO-VAR variants and create a scalable forecasting method supported by parallel computing and fast convergence, which can be used by system operators and renewable power plant operators. A test case with 66 wind power plants is used to show the improvement in forecasting skill from exploring distributed sparse structures. The proposed solution outperformed the conventional autoregressive and vector autoregressive models, as well as a sparse VAR model from the state of the art. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:657 / 675
页数:19
相关论文
共 42 条
[1]  
[Anonymous], 2009, ANLDIS101
[2]  
[Anonymous], 2005, NEW INTRO MULTIPLE T
[3]  
[Anonymous], 2003, ECONOMETRIC THEORY M
[4]  
[Anonymous], 2010, SCI P EUROPEAN WIND
[5]   Handling renewable energy variability and uncertainty in power systems operation [J].
Bessa, Ricardo ;
Moreira, Carlos ;
Silva, Bernardo ;
Matos, Manuel .
WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2014, 3 (02) :156-178
[6]   Spatial-Temporal Solar Power Forecasting for Smart Grids [J].
Bessa, Ricardo J. ;
Trindade, Artur ;
Miranda, Vladimiro .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2015, 11 (01) :232-241
[7]   Wind Power Trading Under Uncertainty in LMP Markets [J].
Botterud, Audun ;
Zhou, Zhi ;
Wang, Jianhui ;
Bessa, Ricardo J. ;
Keko, Hrvoje ;
Sumaili, Jean ;
Miranda, Vladimiro .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (02) :894-903
[8]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[9]  
Chartrand R, 2013, INT CONF ACOUST SPEE, P6009, DOI 10.1109/ICASSP.2013.6638818
[10]   Smart grid projects in Europe: Current status, maturity and future scenarios [J].
Colak, Ilhami ;
Fulli, Gianluca ;
Sagiroglu, Seref ;
Yesilbudak, Mehmet ;
Covrig, Catalin-Felix .
APPLIED ENERGY, 2015, 152 :58-70