D-RESP: Dynamically generated electrostatic potential derived charges from quantum mechanics/molecular mechanics simulations

被引:176
作者
Laio, A [1 ]
VandeVondele, J [1 ]
Rothlisberger, U [1 ]
机构
[1] ETH Honggerberg, HCI, Inorgan Chem Lab, CH-8093 Zurich, Switzerland
关键词
D O I
10.1021/jp0143138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A scheme is proposed for calculating electrostatic potential (ESP) derived charges from mixed quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations. These charges are fitted to the electrostatic field due to the quantum charge density evaluated on the MM atoms close to the QM system and are restrained to the corresponding Hirshfeld value by a quadratic penalty function. The D-RESP charges estimated by this procedure reproduce the field due to the charge density polarized by the environment and can be obtained as a function of time along a finite temperature molecular dynamics trajectory with essentially no computational overhead with respect to a standard QM/MM calculation. The fluctuation of the D-RESP values in a finite temperature run provide information about the importance of polarization effects and thus allow for a direct comparison of the relative performance of polarizable versus non polarizable point charge models. Moreover, the D-RESP charges estimated by this procedure can be used as a simple and straightforward indicator of the chemical state of the system.
引用
收藏
页码:7300 / 7307
页数:8
相关论文
共 36 条
[1]  
Bader R.F. W., 1994, ATOMS MOL
[2]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[3]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[4]  
Berendsen H., 1981, INTERMOLECULAR FORCE, V331, P331, DOI [DOI 10.1007/978-94-015-7658-1_21, 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658]
[5]   UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY [J].
CAR, R ;
PARRINELLO, M .
PHYSICAL REVIEW LETTERS, 1985, 55 (22) :2471-2474
[6]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[7]   REPRESENTATION OF THE MOLECULAR ELECTROSTATIC POTENTIAL BY A NET ATOMIC CHARGE MODEL [J].
COX, SR ;
WILLIAMS, DE .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1981, 2 (03) :304-323
[8]   ELECTRONIC POPULATION ANALYSIS OF MOLECULAR WAVEFUNCTIONS [J].
DAVIDSON, ER .
JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (09) :3320-&
[9]   A COMBINED QUANTUM-MECHANICAL AND MOLECULAR MECHANICAL POTENTIAL FOR MOLECULAR-DYNAMICS SIMULATIONS [J].
FIELD, MJ ;
BASH, PA ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (06) :700-733
[10]  
Hinsen K, 1997, J COMPUT CHEM, V18, P368, DOI 10.1002/(SICI)1096-987X(199702)18:3<368::AID-JCC7>3.0.CO