Timing and Biosynthetic Potential for Carotenoid Accumulation in Genetically Diverse Germplasm of Maize

被引:123
作者
Vallabhaneni, Ratnakar
Wurtzel, Eleanore T. [1 ]
机构
[1] CUNY Herbert H Lehman Coll, Dept Biol Sci, Bronx, NY 10468 USA
基金
美国国家卫生研究院;
关键词
PHYTOENE-SYNTHASE GENE; ISOPRENOID BIOSYNTHESIS; DIPHOSPHATE SYNTHASE; PATHWAY; EXPRESSION; DESATURASE; ARABIDOPSIS; ENDOSPERM; FAMILY; IDENTIFICATION;
D O I
10.1104/pp.109.137042
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Enhancement of the carotenoid biosynthetic pathway in food crops benefits human health and adds commercial value of natural food colorants. However, predictable metabolic engineering or breeding is limited by the incomplete understanding of endogenous pathway regulation, including rate-controlling steps and timing of expression in carotenogenic tissues. The grass family (Poaceae) contains major crop staples, including maize (Zea mays), wheat (Triticum aestivum), rice (Oryza sativa), sorghum (Sorghum bicolor), and millet (Pennisetum glaucum). Maize carotenogenesis was investigated using a novel approach to discover genes encoding limiting biosynthetic steps in the nutritionally targeted seed endosperm. A combination of bioinformatics and cloning were first used to identify and map gene families encoding enzymes in maize and other grasses. These enzymes represented upstream pathways for isopentenyl diphosphate and geranylgeranyl diphosphate synthesis and the downstream carotenoid biosynthetic pathway, including conversion to abscisic acid. A maize germplasm collection was used for statistical testing of the correlation between carotenoid content and candidate gene transcript levels. Multiple pathway bottlenecks for isoprenoid biosynthesis and carotenoid biosynthesis were discovered in specific temporal windows of endosperm development. Transcript levels of paralogs encoding isoprenoid isopentenyl diphosphate and geranylgeranyl diphosphate-producing enzymes, DXS3, DXR, HDR, and GGPPS1, were found to positively correlate with endosperm carotenoid content. For carotenoid pathway enzymes, transcript levels for CrtISO inversely correlated with seed carotenoid content, as compared with positive correlation of PSY1 transcripts. Since zeaxanthin epoxidase (ZEP) depletes the carotenoid pool in subsequent conversion to abscisic acid, ZEP transcripts were examined. Carotenoid accumulation was found to be inversely associated with ZEP1 and ZEP2 transcript levels. Extension of the maize results using phylogenetic analysis identified orthologs in other grass species that may serve as potential metabolic engineering targets.
引用
收藏
页码:562 / 572
页数:11
相关论文
共 46 条
[1]   Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol [J].
Besumbes, O ;
Sauret-Güeto, S ;
Phillips, MA ;
Imperial, S ;
Rodríguez-Concepción, M ;
Boronat, A .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 88 (02) :168-175
[2]   Regulation of carotenoid biosynthesis in plants:: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors [J].
Botella-Pavía, P ;
Besumbes, O ;
Phillips, MA ;
Carretero-Paulet, L ;
Boronat, A ;
Rodríguez-Concepción, M .
PLANT JOURNAL, 2004, 40 (02) :188-199
[3]  
BUCKNER B, 1990, PLANT CELL, V2, P867, DOI 10.1105/tpc.2.9.867
[4]   Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase [J].
Carretero-Paulet, Lorenzo ;
Cairo, Albert ;
Botella-Pavia, Patricia ;
Besumbes, Oscar ;
Campos, Narciso ;
Boronat, Albert ;
Rodriguez-Concepcion, Manuel .
PLANT MOLECULAR BIOLOGY, 2006, 62 (4-5) :683-695
[5]   Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8 [J].
Cazzonelli, Christopher I. ;
Cuttriss, Abby J. ;
Cossetto, Susan B. ;
Pye, William ;
Crisp, Peter ;
Whelan, Jim ;
Finnegan, E. Jean ;
Turnbull, Colin ;
Pogson, Barry J. .
PLANT CELL, 2009, 21 (01) :39-53
[6]   Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity [J].
Cervantes-Cervantes, M ;
Gallagher, CE ;
Zhu, CF ;
Wurtzel, ET .
PLANT PHYSIOLOGY, 2006, 141 (01) :220-231
[7]   Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway [J].
Davidovich-Rikanati, Rachel ;
Sitrit, Yaron ;
Tadmor, Yaakov ;
Iijima, Yoko ;
Bilenko, Natalya ;
Bar, Einat ;
Carmona, Bentsi ;
Fallik, Elazar ;
Dudai, Nativ ;
Simon, James E. ;
Pichersky, Eran ;
Lewinsohn, Efraim .
NATURE BIOTECHNOLOGY, 2007, 25 (08) :899-901
[8]   ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J].
Emanuelsson, O ;
Nielsen, H ;
Von Heijne, G .
PROTEIN SCIENCE, 1999, 8 (05) :978-984
[9]   Contribution of hydroxymethylbutenyl diphosphate synthase to carotenoid biosynthesis in bacteria and plants [J].
Flores-Perez, Ursula ;
Perez-Gil, Jordi ;
Rodriguez-Villalon, Antia ;
Jose Gil, Maria ;
Vera, Pablo ;
Rodriguez-Concepcion, Manuel .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 371 (03) :510-514
[10]   CONSTITUTIVE EXPRESSION OF A FRUIT PHYTOENE SYNTHASE GENE IN TRANSGENIC TOMATOES CAUSES DWARFISM BY REDIRECTING METABOLITES FROM THE GIBBERELLIN PATHWAY [J].
FRAY, RG ;
WALLACE, A ;
FRASER, PD ;
VALERO, D ;
HEDDEN, P ;
BRAMLEY, PM ;
GRIERSON, D .
PLANT JOURNAL, 1995, 8 (05) :693-701