Automatic Segmentation and Classification of Multiple Sclerosis in Multichannel MRI

被引:43
作者
Akselrod-Ballin, Ayelet [1 ]
Galun, Meirav [2 ]
Gomori, John Moshe [3 ]
Filippi, Massimo [4 ]
Valsasina, Paola [4 ]
Basri, Ronen [2 ]
Brandt, Achi [2 ]
机构
[1] Harvard Univ, Sch Med, Childrens Hosp, Computat Radiol Lab, Boston, MA 02115 USA
[2] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[3] Hadassah Univ Hosp, Dept Radiol, IL-91120 Jerusalem, Israel
[4] Hosp San Raffaele, Neuroimaging Res Unit, I-20132 Milan, Italy
关键词
Brain imaging; MRI; multiple sclerosis; segmentation; WHITE-MATTER; LESIONS; BRAIN;
D O I
10.1109/TBME.2008.926671
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We introduce a multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in automatically detecting multiple sclerosis (MS) lesions in 3-D multichannel magnetic resonance (MR) images. Our method uses segmentation to obtain a hierarchical decomposition of a multichannel, anisotropic MR scans. It then produces a rich set of features describing the segments in terms of intensity, shape, location, neighborhood relations, and anatomical context. These features are then fed into a decision forest classifier, trained with data labeled by experts, enabling the detection of lesions at all scales. Unlike common approaches that use voxel-by-voxel analysis, our system can utilize regional properties that are often important for characterizing abnormal brain structures. We provide experiments on two types of real MR images: a multichannel proton-density-, T2-, and T1-weighted dataset of 25 MS patients and a single-channel fluid attenuated inversion recovery (FLAIR) dataset of 16 MS patients. Comparing our results with lesion delineation by a human expert and with previously extensively validated results shows the promise of the approach.
引用
收藏
页码:2461 / 2469
页数:9
相关论文
共 31 条
[1]  
ACHIRON A, 2001, MAGN RESON IMAG, V177, P85
[2]  
Akselrod-Ballin A, 2006, LECT NOTES COMPUT SC, V4191, P209
[3]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[4]  
Breiman L., 1984, BIOMETRICS, V40, P874, DOI 10.1201/9781315139470
[5]   MRI SEGMENTATION - METHODS AND APPLICATIONS [J].
CLARKE, LP ;
VELTHUIZEN, RP ;
CAMACHO, MA ;
HEINE, JJ ;
VAIDYANATHAN, M ;
HALL, LO ;
THATCHER, RW ;
SILBIGER, ML .
MAGNETIC RESONANCE IMAGING, 1995, 13 (03) :343-368
[6]  
DUDA JRO, 1973, PATTERN CLASSIFICATI
[7]   Medical image analysis: Progress over two decades and the challenges ahead [J].
Duncan, JS ;
Ayache, N .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (01) :85-106
[8]  
Frackowiak R.S.J., 2003, HUMAN BRAIN FUNCTION, V2nd
[9]  
Galun M, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P716
[10]  
Ge YL, 2003, AM J NEURORADIOL, V24, P1935