Automatic Segmentation and Classification of Multiple Sclerosis in Multichannel MRI

被引:43
作者
Akselrod-Ballin, Ayelet [1 ]
Galun, Meirav [2 ]
Gomori, John Moshe [3 ]
Filippi, Massimo [4 ]
Valsasina, Paola [4 ]
Basri, Ronen [2 ]
Brandt, Achi [2 ]
机构
[1] Harvard Univ, Sch Med, Childrens Hosp, Computat Radiol Lab, Boston, MA 02115 USA
[2] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[3] Hadassah Univ Hosp, Dept Radiol, IL-91120 Jerusalem, Israel
[4] Hosp San Raffaele, Neuroimaging Res Unit, I-20132 Milan, Italy
关键词
Brain imaging; MRI; multiple sclerosis; segmentation; WHITE-MATTER; LESIONS; BRAIN;
D O I
10.1109/TBME.2008.926671
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We introduce a multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in automatically detecting multiple sclerosis (MS) lesions in 3-D multichannel magnetic resonance (MR) images. Our method uses segmentation to obtain a hierarchical decomposition of a multichannel, anisotropic MR scans. It then produces a rich set of features describing the segments in terms of intensity, shape, location, neighborhood relations, and anatomical context. These features are then fed into a decision forest classifier, trained with data labeled by experts, enabling the detection of lesions at all scales. Unlike common approaches that use voxel-by-voxel analysis, our system can utilize regional properties that are often important for characterizing abnormal brain structures. We provide experiments on two types of real MR images: a multichannel proton-density-, T2-, and T1-weighted dataset of 25 MS patients and a single-channel fluid attenuated inversion recovery (FLAIR) dataset of 16 MS patients. Comparing our results with lesion delineation by a human expert and with previously extensively validated results shows the promise of the approach.
引用
收藏
页码:2461 / 2469
页数:9
相关论文
共 31 条
[11]   Three-dimensional analysis of the geometry of individual multiple sclerosis lesions: Detection of shape changes over time using spherical harmonics [J].
Goldberg-Zimring, D ;
Achiron, A ;
Guttmann, CRG ;
Azhari, H .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2003, 18 (03) :291-301
[12]   Utilizing segmented MRI data in image-guided surgery [J].
Grimson, WEL ;
Ettinger, GJ ;
Kapur, T ;
Leventon, ME ;
Wells, WM ;
Kikinis, R .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 1997, 11 (08) :1367-1397
[13]  
Guttmann CRG, 1999, JMRI-J MAGN RESON IM, V9, P509, DOI 10.1002/(SICI)1522-2586(199904)9:4<509::AID-JMRI2>3.0.CO
[14]  
2-S
[15]   Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI [J].
Johnston, B ;
Atkins, MS ;
Mackiewich, B ;
Anderson, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (02) :154-169
[16]   MODEL-BASED 3-D SEGMENTATION OF MULTIPLE-SCLEROSIS LESIONS IN MAGNETIC-RESONANCE BRAIN IMAGES [J].
KAMBER, M ;
SHINGHAL, R ;
COLLINS, DL ;
FRANCIS, GS ;
EVANS, AC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1995, 14 (03) :442-453
[17]   A PROBABILISTIC ATLAS OF THE HUMAN BRAIN - THEORY AND RATIONALE FOR ITS DEVELOPMENT [J].
MAZZIOTTA, JC ;
TOGA, AW ;
EVANS, A ;
FOX, P ;
LANCASTER, J .
NEUROIMAGE, 1995, 2 (02) :89-101
[18]   The role of magnetic resonance techniques in understanding and managing multiple sclerosis [J].
Miller, DH ;
Grossman, RI ;
Reingold, SC ;
McFarland, HF .
BRAIN, 1998, 121 :3-24
[19]   Expert knowledge-guided segmentation system for brain MRI [J].
Pitiot, A ;
Delingette, H ;
Thompson, PM ;
Ayache, N .
NEUROIMAGE, 2004, 23 :S85-S96
[20]  
Shahar A, 2004, 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, P440