Wavelength selection by dielectric-loaded plasmonic components

被引:83
作者
Holmgaard, Tobias [1 ]
Chen, Zhuo [1 ]
Bozhevolnyi, Sergey I. [2 ]
Markey, Laurent [3 ]
Dereux, Alain [3 ]
Krasavin, Alexey V. [4 ]
Zayats, Anatoly V. [4 ]
机构
[1] Univ Aalborg, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[2] Univ So Denmark, Inst Sensors Signals & Electrotech SENSE, DK-5230 Odense M, Denmark
[3] Univ Bourgogne, CNRS, UMR 5209, Inst Carnot Bourgogne, F-21078 Dijon, France
[4] Queens Univ Belfast, IRCEP, Ctr Nanostruct Media, Belfast BT7 1NN, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
Bragg gratings; dielectric resonators; optical filters; optical waveguides; photolithography; plasmons; polaritons; POLARITON WAVE-GUIDES; OPTICS;
D O I
10.1063/1.3078235
中图分类号
O59 [应用物理学];
学科分类号
摘要
Fabrication, characterization, and modeling of waveguide-ring resonators and in-line Bragg gratings for wavelength selection in the telecommunication range are reported utilizing dielectric-loaded surface plasmon-polariton waveguides. The devices were fabricated by depositing subwavelength-sized polymer ridges on a smooth gold film using industrially compatible large-scale UV photolithography. We demonstrate efficient and compact wavelength-selective filters, including waveguide-ring resonators with an insertion loss of similar to 2 dB and a footprint of only 150 mu m(2) featuring narrow bandwidth (similar to 20 nm) and high contrast (similar to 13 dB) features in the transmission spectrum. The performance of the components is found in good agreement with the results obtained by full vectorial three-dimensional finite element simulations.
引用
收藏
页数:3
相关论文
共 20 条
[11]   Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides [J].
Krasavin, A. V. ;
Zayats, A. V. .
PHYSICAL REVIEW B, 2008, 78 (04)
[12]   Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides [J].
Krasavin, A. V. ;
Zayats, A. V. .
APPLIED PHYSICS LETTERS, 2007, 90 (21)
[13]   Nano-optics from sensing to waveguiding [J].
Lal, Surbhi ;
Link, Stephan ;
Halas, Naomi J. .
NATURE PHOTONICS, 2007, 1 (11) :641-648
[14]   Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures [J].
Maier, SA ;
Atwater, HA .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (01)
[15]   Plasmonic materials [J].
Murray, W. Andrew ;
Barnes, William L. .
ADVANCED MATERIALS, 2007, 19 (22) :3771-3782
[16]   Laser-fabricated dielectric optical components for surface plasmon polaritons [J].
Reinhardt, C ;
Passinger, S ;
Chichkov, BN ;
Marquart, C ;
Radko, IP ;
Bozhevolnyi, SI .
OPTICS LETTERS, 2006, 31 (09) :1307-1309
[17]   Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers [J].
Steinberger, B. ;
Hohenau, A. ;
Ditlbacher, H. ;
Aussenegg, F. R. ;
Leitner, A. ;
Krenn, J. R. .
APPLIED PHYSICS LETTERS, 2007, 91 (08)
[18]   Dielectric stripes on gold as surface plasmon waveguides [J].
Steinberger, B ;
Hohenau, A ;
Ditlbacher, H ;
Stepanov, AL ;
Drezet, A ;
Aussenegg, FR ;
Leitner, A ;
Krenn, JR .
APPLIED PHYSICS LETTERS, 2006, 88 (09)
[19]   Universal relations for coupling of optical power between microresonators and dielectric waveguides [J].
Yariv, A .
ELECTRONICS LETTERS, 2000, 36 (04) :321-322
[20]   Plasmonics: the next chip-scale technology [J].
Zia, Rashid ;
Schuller, Jon A. ;
Chandran, Anu ;
Brongersma, Mark L. .
MATERIALS TODAY, 2006, 9 (7-8) :20-27