Fabrication of molecular materials using peptide construction motifs

被引:113
作者
Zhao, XJ
Zhang, SG
机构
[1] MIT, Ctr Biomed Engn, Cambridge, MA 02139 USA
[2] MIT, Ctr Bits & Atom, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1016/j.tibtech.2004.07.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biotechnology has generally been associated with gene cloning and expression, genomics, high throughput drug discovery, biomedical advancement and agricultural development. That is about to change. Biotechnology will expand to encompass discovery and fabrication of biological and molecular materials with diverse structures, functionalities and utilities. The advent of nanobiotechnology and nanotechnology have accelerated this trend. Analogous to the construction of an intricate architectural structure, diverse and numerous structural motifs are used to assemble a sophisticated complex. Nature has selected, produced and evolved numerous molecular architectural motifs over billions of years for particular functions. These molecular motifs can now be used to build materials from the bottom up. Biotechnology will continue to harness nature's enormous power to benefit other disciplines and society as a whole.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 43 条
[1]   Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers [J].
Aggeli, A ;
Nyrkova, IA ;
Bell, M ;
Harding, R ;
Carrick, L ;
McLeish, TCB ;
Semenov, AN ;
Boden, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :11857-11862
[2]   Conformational behavior of ionic self-complementary peptides [J].
Altman, M ;
Lee, P ;
Rich, A ;
Zhang, SG .
PROTEIN SCIENCE, 2000, 9 (06) :1095-1105
[3]  
[Anonymous], 2012, Introduction to protein structure
[4]  
[Anonymous], 2003, Protein Structure and Function
[5]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[6]   Induction of protein-like molecular architecture by self-assembly processes [J].
Fields, GB .
BIOORGANIC & MEDICINAL CHEMISTRY, 1999, 7 (01) :75-81
[7]   Self-assembly and mineralization of peptide-amphiphile nanofibers [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
SCIENCE, 2001, 294 (5547) :1684-1688
[8]   Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5133-5138
[9]   Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds [J].
Holmes, TC ;
de Lacalle, S ;
Su, X ;
Liu, GS ;
Rich, A ;
Zhang, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6728-6733
[10]   Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair [J].
Kisiday, J ;
Jin, M ;
Kurz, B ;
Hung, H ;
Semino, C ;
Zhang, S ;
Grodzinsky, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :9996-10001