Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells

被引:100
作者
Bassan, Paul [2 ]
Byrne, Hugh J. [1 ]
Lee, Joe [2 ]
Bonnier, Franck [1 ]
Clarke, Colin [1 ]
Dumas, Paul [3 ]
Gazi, Ehsan [4 ]
Brown, Michael D. [4 ]
Clarke, Noel W. [4 ,5 ,6 ]
Gardner, Peter [2 ]
机构
[1] Dublin Inst Technol, Focas Res Inst, Dublin 8, Ireland
[2] Univ Manchester, Manchester Interdisciplinary Bioctr, Sch Chem Engn & Analyt Sci, Manchester M1 7DN, Lancs, England
[3] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
[4] Univ Manchester, Paterson Inst Canc Res, Sch Canc & Imaging Sci, Genito Urinary Canc Res Grp, Manchester M20 4BX, Lancs, England
[5] Christie NHS Fdn Trust, Dept Urol, Manchester M20 4BX, Lancs, England
[6] Salford Royal NHS Fdn Trust, Dept Urol, Salford M6 8HD, Lancs, England
基金
英国医学研究理事会;
关键词
PROSTATE-CANCER CELLS; INFRARED MICROSPECTROSCOPY; SPECTROSCOPY;
D O I
10.1039/b821349f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fourier transform infrared spectra of a single cell in transflection geometry are seen to vary significantly with position on the cell, showing a distorted derivative-like lineshape in the region of the optically dense nucleus. A similar behaviour is observable in a model system of the protein albumin doped in a potassium bromide disk. It is demonstrated that the spectrum at any point is a weighted sum of the sample reflection and transmission and that the dominance of the reflection spectrum in optically dense regions can account for some of the spectral distortions previously attributed to dispersion artefacts. Rather than being an artefact, the reflection contribution is ever present in transflection spectra and it is further demonstrated that the reflection characteristics can be used for cellular mapping.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 23 条
[1]  
BASSAN P, 2009, ANALYST UNPUB
[2]  
Dukor R.K., 2002, HDB VIBRATIONAL SPEC, P3335, DOI [10.1002/0470027320.s8107, DOI 10.1002/0470027320.S8107]
[3]   Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL [J].
Dumas, P. ;
Polack, F. ;
Lagarde, B. ;
Chubar, O. ;
Giorgetta, J. L. ;
Lefrancois, S. .
INFRARED PHYSICS & TECHNOLOGY, 2006, 49 (1-2) :152-160
[4]   Imaging capabilities of synchrotron infrared microspectroscopy [J].
Dumas, P ;
Jamin, N ;
Teillaud, JL ;
Miller, LM ;
Beccard, B .
FARADAY DISCUSSIONS, 2004, 126 :289-302
[5]   The use of synchrotron infrared microspectroscopy in biological and biomedical investigations [J].
Dumas, P ;
Miller, L .
VIBRATIONAL SPECTROSCOPY, 2003, 32 (01) :3-21
[6]  
Dumas P.A., 2003, SPECTROSCOPY EUROPE, V15, P17
[7]   Adding synchrotron radiation to infrared microspectroscopy:: what's new in biomedical applications? [J].
Dumas, Paul ;
Sockalingum, Ganesh D. ;
Sule-Suso, Josep .
TRENDS IN BIOTECHNOLOGY, 2007, 25 (01) :40-44
[8]   Infrared spectroscopic imaging for histopathologic recognition [J].
Fernandez, DC ;
Bhargava, R ;
Hewitt, SM ;
Levin, IW .
NATURE BIOTECHNOLOGY, 2005, 23 (04) :469-474
[9]   A study of cytokinetic and motile prostate cancer cells using synchrotron-based FTIR micro spectroscopic imaging [J].
Gazi, E ;
Dwyer, J ;
Lockyer, NP ;
Miyan, J ;
Gardner, P ;
Hart, CA ;
Brown, MD ;
Clarke, NW .
VIBRATIONAL SPECTROSCOPY, 2005, 38 (1-2) :193-201
[10]   Fixation protocols for subcellular imaging by synchrotron-based Fourier transform infrared microspectroscopy [J].
Gazi, E ;
Dwyer, J ;
Lockyer, NP ;
Miyan, J ;
Gardner, P ;
Hart, C ;
Brown, M ;
Clarke, NW .
BIOPOLYMERS, 2005, 77 (01) :18-30